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Introduction

We will look at selected topics in classical mechanics and
electrodynamics and apply them to important topics in
accelerator physics. The focus will be on rings, but the
methodology applies more generally.

The choice of material is somewhat subjective.

I assume knowledge of basics of classical mechanics,
electrodynamics, and the special theory of relativity.

The course is designed to be self-contained. We will go over
key derivations, at least briefly.

You have lecture notes from Gennady Stupakov’s class in
2011, extra handouts, and a textbook. We will only cover a
portion of this material, and not always in order, as explained
in today’s handout. The textbook is mostly for reference.

Some materials are available online, laser.lbl.gov/uspas2013
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Practical matters

Daily schedule:

9 am — 12 pm lectures
2 pm — 4 pm problem solutions, review of special topics

Evenings we will be available for questions
Fridays will be short days

Homework is due next day at 9 am.

We will have 9 days of lectures and a final exam on Friday,
June 21, 9 am — 12 pm. No homework will be assigned the
day before the exam. Final grade is based on 60% homework
+ 40% exam.

SI system of units is used throughout the course
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Practical matters

Mornings and Afternoons, here unless otherwise specified

Evenings in same area as meals unless otherwise specified

Teaching the course:

Gregory Penn Main instructor 510-928-3643
gepenn@lbl.gov

Gabriel Marcus Co-instructor, 2nd week only
gmarcus@lbl.gov

Patrick McChesney Homeworks and special topics
pmcchesn@indiana.edu

We have a small class, feel free to ask questions during
lectures. The pacing of the class can also be adjusted.

Any comments on lectures and notes are highly appreciated.

Using software packages (Matlab, Mathematica) for
calculations is fine. There will be no computer lab.

4/441



Main themes of this course

Classical Mechanics

Oscillators
Hamiltonial formulation of equations of motion
Action-angle variables
Dynamics in a ring
Distribution function and Vlasov equation
Special Relativity

Electromagnetism

Self-fields of beams
Effect of environment
Radiation fields
Synchrotron radiation
Formation length of radiation, coherent effects, beam
diagnostics
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Recommended references

Books:

Jorge V. José and Eugene J. Saletan. Classical dynamics: a
contemporary approach. Cambridge University Press, 1998.

J. D. Jackson. Classical Electrodynamics. Wiley, New York,
third edition, 1999.

Herbert Goldstein, Charles Poole, and John Safko. Classical
mechanics. Edison-Wesley, 3d edition, 2000.

Walter Greiner, Classical Mechanics: Systems of particles and
Hamiltonian dynamcs, 2nd edition. Springer, 2010.

Gerald Jay Sussman and Jack Wisdom. Structure and
Interpretation of Classical Mechanics. MIT Press, 2001.

The last ref. is available online at:
http://mitpress.mit.edu/SICM/
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Linear and Nonlinear Oscillators
(Lecture 2)

June 10, 2013
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Lecture outline

A simple model of a linear oscillator lies in the foundation of many
physical phenomena in accelerator dynamics. A typical trajectory
of a particle in an accelerator can be represented as an oscillation
around a so called reference orbit.

We will start from recalling the main properties of the linear
oscillator. We then look at the response of a linear oscillator to
external force, and effects of varying oscillator frequency. We then
proceed to an oscillator with a small nonlinearity, with a pendulum
as a solvable example of a nonlinear oscillator. We finish with brief
discussion of resonance in nonlinear oscillators.
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Linear Oscillator

A differential equation for a linear oscillator without damping has a
form

d2x

dt2
+ω2

0x = 0 (2.1)

where x(t) is the oscillating quantity, t is time and ω0 is the
oscillator frequency. For a mass on a spring, ω2

0 = k/m, where k is
the spring constant.

x
k

Figure : A mass attached to a spring.
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Linear Oscillator

General solution of Eq. (2.1) is characterized by the amplitude A and the
phase φ

x(t) = A cos(ω0t + φ) (2.2)

This solution conserves the quantity x(t)2 + ẋ2(t)/ω2
0.
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Linear Oscillator

Damping due to a friction force which is proportional to the
velocity introduces a term with the first derivative into the
differential equation

d2x

dt2
+ γ

dx

dt
+ω2

0x = 0 (2.3)

where γ is the damping constant (it has the dimension of
frequency). A general solution to this equation is

x(t) = Ae−γ1t cos(ω1t + φ) (2.4)

with

ω1 = ω0

√
1 −

γ2

4ω2
0

γ1 =
1

2
γ . (2.5)

If γ� ω0, then the frequency ω1 is close to ω0, ω1 ≈ ω0.
Quality factor Q = ω0/2γ.
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Linear Oscillator

As an example, consider particle’s oscillations in the Low Energy
Ring in PEP-II at SLAC. In the transverse direction, the particle
executes the betatron oscillations with the frequency about 40
times larger than the revolution frequency of 136 kHz. This makes
ωβ ∼ 2π× 5.4 MHz. The damping time γ−1

1 due to the
synchrotron radiation is about 60 ms, which means that
γ = 2/(60ms) ≈ 30 Hz. We see that the ratio γ/ωβ ∼ 10−6 is
extremely small for these oscillations, and the damping can be
neglected in first approximation.
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Linear Oscillator

If the oscillator is driven by an external force f (t) then we have

d2x

dt2
+ γ

dx

dt
+ω2

0x = f (t) (2.6)

(f (t) is properly normalized here). From the ODE theory we know
how to write a general solution to the above equation. We will
write down here the result for the case γ = 0:

x(t) = x0 cosω0t +
ẋ0
ω0

sinω0t +
1

ω0

∫ t
0

sinω0(t − t ′)f (t ′)dt ′

(2.7)

where x0 and ẋ0 are initial, at t = 0, coordinate and velocity of the
oscillator.
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Resonance

Let’s assume that an oscillator is driven by a sinusoidal force,
f (t) = f0 cosωt. A convenient way to study this problem is to use
complex numbers. Instead of considering a real function x(t) we will
consider a complex function ξ(t) such that x(t) = Re ξ(t). The equation
for ξ is

d2ξ

dt2
+ γ

dξ

dt
+ω2

0ξ = f0e
−iωt (2.8)

Let us seek solution in the form ξ(t) = ξ0e
−iωt where ξ0 is a complex

number, ξ0 = |ξ0|e
iφ. This means that the real variable x is

x(t) = Re ξ(t) = Re (|ξ0|e
−iωt+iφ) = |ξ0| cos(ωt − φ). We have

(−ω2 − iωγ+ω2
0)ξ0 = f0 (2.9)

and

ξ0 =
f0

ω2
0 −ω

2 − iωγ
(2.10)
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Resonance

For the amplitude squared of the oscillations we find

|ξ0|
2 =

f 20
(ω2

0 −ω
2)2 +ω2γ2

(2.11)

The plot of the amplitude versus frequency ω is shown below for
γ = 0.5, 0.2, 0.1, 0
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Resonance

When the damping factor γ is small we have an effect of
resonance: the amplitude of oscillations increases when the driving
frequency approaches the resonant frequency. The width ∆ωres of
the resonance is defined as a characteristic width of the resonant
curve, ∆ωres ∼ γ. It makes sense to talk about the resonance only
when γ� ω0.
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Random kicks

What happens if an oscillator is kicked at random times? Let us
assume that the external force is given by the following expression,

f (t) =
∑
i

aiδ(t − ti ) (2.12)

where ti are random moments of time, and the kick amplitudes ai
take random values. To deal with this problem we will use Eq.
(2.7) (assuming for simplicity that γ = 0). We then have

x(t) =
1

ω0

∫ t
0

sinω0(t − t ′)f (t ′)dt ′

=
∑
i

ai
ω0

sinω0(t − ti ) (2.13)

where we also assumed that at time t = 0 the oscillator was at
rest. The result is a random function whose particular values are
determined by the specific sequence of ai and ti .
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Random kicks

We would like to find some statistical characteristics of this random
motion. An important quantity is the sum x(t)2 + ẋ2(t)/ω2

0—for
free oscillations it is equal to the square of the amplitude. So we
want to find the statistical average of this quantity:

〈x(t)2 + ẋ2(t)

ω2
0

〉 =

=〈ω−2
0

∑
i ,j

aiaj(sinω0(t − ti ) sinω0(t − tj)

+ cosω0(t − ti ) cosω0(t − tj))〉

= 〈ω−2
0

∑
i ,j

aiaj cosω0(ti − tj)〉 (2.14)

Because ti and tj are not correlated if i 6= j , the phase of the
cosine function is random, and the terms with i 6= j vanish after
averaging. Only the terms with i = j survive the averaging.
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Random kicks

The result is

〈x(t)2 + ẋ2(t)

ω2
0

〉 = 〈a
2〉
ω2

0

Nkick(t) =
〈a2〉
ω2

0

t

∆t
(2.15)

where Nkick(t) is the number of kicks on the interval [0, t], ∆t is
an average time between the kicks. We see that the square of the
amplitude grows linearly with time. This is a characteristic of a
diffusion process.
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Parametric resonance

Let us consider what happens if we vary parameters of our linear
oscillator periodically with time. Since we have only one
parameter, this means that ω0(t) is a periodic function,

d2x

dt2
+ω2

0(t)x = 0 (2.16)

Moreover, let us assume that

ω2
0(t) = Ω

2(1 − h cosνt) (2.17)

(the resulting equation is called the Mathieu equation). Naively,
one might think that if h is small, the solution will be close to that
of a linear oscillator with constant parameters. This is not always
the case, as numerical solutions show. It turns out that even if h is
small, oscillations become unstable if the ratio of the frequencies
Ω/ν is close to n/2, where n is an integer. In other words, for
ν ≈ 2Ω, Ω, Ω/2, Ω/3 . . . the oscillator is unstable.

20/441



Parametric resonance

The exact pattern of stable and unstable regions in the plane Ω, h
is rather complicated. Unstable regions for Eq. (2.16) are bounded
by red curves from above and blue curves from below.
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Note that those regions become exponentially narrow if h . 1 and
ν/Ω is small. For a small ν we have an oscillator whose
parameters are varied adiabatically slow. Small damping makes the
system stable for small h and ν.
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Swing - an example of parametric resonance

Question: what is ν/Ω here?
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Adiabatic variation of parameters

Consider slow variation of the parameters of the oscillator. Assume that
the frequency ω0 varies in time from a value ω1 to ω2 over a time
interval τ:

ω−2
0

∣∣∣∣dω0

dt

∣∣∣∣� 1 (2.18)

The relative change of the frequency ω0 over one radian of oscillations is
small. This is an adiabatic regime.
How does the amplitude of the oscillations vary in time? Seek solution of
Eq. (2.16) in the following (complex) form

ξ(t) = A(t) exp

(
−i

∫ t
0

ω0(t
′)dt ′ + φ0

)
(2.19)

where A(t) is a slowly varying amplitude and φ is an initial phase. Put
this into (2.16)

d2A

dt2
− 2iω0

dA

dt
− i

dω0

dt
A = 0 (2.20)
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Adiabatic variation of parameters

We expect that the amplitude A is a slow function of time, and
neglect d2A/dt2 in this equation, which gives

2ω0
dA

dt
+

dω0

dt
A = 0 (2.21)

This equation can also be written as

d

dt
ln(A2ω0) = 0 (2.22)

from which it follows that in the adiabatic regime
A(t)2ω0(t) = const. We found an adiabatic invariant for our
oscillator.
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Adiabatic variation of parameters

The Figure shows the result of numerical integration of Eq. (2.16)
in the adiabatic regime.
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Figure : The left plot shows the function ω0(t). The red curve on the
right plot shows the quantity x(t)2 + ẋ2(t)/ω2

0 (which is close to the
amplitude squared A2) and the blue curve shows the product of this
quantity with ω0(t). We see that the product is approximately
conserved, and hence is an adiabatic invariant.
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Nonlinear oscillator

The linear oscillator is usually obtained as a first approximation in
the expansion near the equilibrium position of a stable system.
Higher order terms would lead to nonlinear terms in the equation

d2x

dt2
+ω2

0x = αx2 + βx3 + . . . (2.23)

where the coefficients α, β, are small. What is the effect of these
terms? The most important consequence of nonlinear terms is that
they introduce a dependance of frequency of oscillations on
amplitude.
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Pendulum

l

Θ

g

m

Instead of studying Eq. (2.23) we will
analyze first the pendulum equation

θ̈+ω2
0 sin θ = 0 (2.24)

where ω2
0 = g/l , l being the length of the

pendulum.

Note that for small amplitudes, θ� 1, we have

sin θ ≈ θ− 1

6
θ3 (2.25)

and we recover Eq. (2.23) with α = 0 and β = ω2
0/6. The linear

approximation for the pendulum equation is obtained if we neglect
the cubic term in this expansion.
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Pendulum

Of course, the pendulum can be solved exactly if we use the energy
conservation. Multiplying Eq. (2.24) by θ̇ gives

1

2

d

dt
θ̇2 −ω2

0

d

dt
cos θ = 0 (2.26)

from which it follows that the quantity

E =
1

2ω2
0

θ̇2 − cos θ = const (2.27)

is conserved. We call E the energy of the system; each orbit is
characterized by its own energy. For a given energy E we have

θ̇ = ±ω0

√
2(E + cos θ) (2.28)
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Pendulum

This equation allows us to graph the phase portrait of the system
where we plot trajectories on the plane (θ, θ̇/ω0).
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There are stable points, unstable points and the separatrix on this
plot. Oscillations correspond to values of E such that −1 < E < 1,
with rotation occuring at E > 1. The separatrix has E = 1.
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Pendulum

Let us find now how the period of the pendulum T (and hence the
frequency ω = 2π/T ) depends on the amplitude. We can
integrate Eq. (2.28)

ω0

∫ t2
t1

dt =

∫θ2
θ1

dθ√
2(E + cos θ)

(2.29)

For a given energy E , inside the separatrix, the pendulum swings
between −θ0 and θ0, where θ0 is defined by the relation
cos θ0 = −E , hence

ω0(t2 − t1) =
1√
2

∫θ2
θ1

dθ√
(cos θ− cos θ0)

. (2.30)

To find a half a period of the oscillations we need to integrate from
−θ0 to θ0:

1

2
Tω0 =

1√
2

∫θ0
−θ0

dθ√
(cos θ− cos θ0)

(2.31)
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Pendulum period

The result can be expressed in terms of the elliptic function K of
the first kind

T

T0
=

2

π
K

(
sin2

(
θ0

2

))
(2.32)

where T0 = 2π/ω0 is the period in the linear approximation.
Period T as a function of the amplitude angle θ0 in the range
0 < θ0 < π:
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Pendulum period—small amplitudes

For small values of the argument, the Taylor expansion of the
elliptic function is: (2/π)K (x) ≈ 1 + x/4. This means that for
small amplitudes the frequency of oscillations is given by

ω ≈ ω0

(
1 −

θ20
16

)
(2.33)

it decreases with the amplitude.
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Pendulum period—large amplitudes

Near the separatrix, the period of oscillations becomes very large.
The separatrix corresponds to θ0 = π, and we can use the
approximation (2/π)K (1 − x) ≈ −(ln x)/π valid for x � 1, to find
an approximate formula for T near the separatrix. We obtain

T

T0
≈ 1

π
ln

1

1 − E
(2.34)

As we see, the period diverges logarithmically as E approaches its
value at the separatrix.
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Nonlinear oscillator

In the general case of Eq. (2.23) the approximate solution will be

x(t) = A(t) cos[ω(A)t + φ] (2.35)

where the frequency ω now becomes a function of the amplitude

ω(A) ≈ ω0 + aA2 . (2.36)

In this equation we have to assume that the correction to the
frequency is small, ω0 � aA2. One can show that

a = −
3β

8ω0
−

5α2

12ω3
0

(2.37)
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Nonlinear resonance

For a linear oscillator a resonant frequency can drive the amplitude to
very large values, if the damping is small. The situation changes for a
nonlinear oscillator. In this case, when the amplitude grows, the
frequency of the oscillator changes and the oscillator detunes itself from
the resonance.
Let us first make a rough estimate of the maximum amplitude of a
nonlinear resonance. Take Eq. (2.11) and set γ = 0 (no damping):

A2 = |ξ0|
2 =

f 20
(ω2

0 −ω
2)2

(2.38)

Replace ω0 by ω0 + aA2 and then set ω = ω0 (the frequency of the
driving force is equal to that of the linear oscillator). Using the smallness
of aA2 we find

A2 ≈ f 20
(2aω0A2)2

(2.39)
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Nonlinear resonance

This should be considered as an equation for A, from which we find

A ≈
(

f0
2aω0

)1/3

(2.40)

We see that due to nonlinearity, even at exact resonance, the
amplitude of the oscillations is finite: it is proportional to a−1/3.

It is possible for an even larger amplitude A1 to be reached by
gradually increasing ω to ω0 + aA2

1.
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Lagrangian and Hamiltonian equations of motion
(Lecture 3)

June 10, 2013
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Lecture outline

The most general description of motion for a physical system is
provided in terms of the Lagrange and the Hamilton functions. In
this lecture we introduce the Lagrange equations of motion and
discuss the transition from the Lagrange to the Hamilton
equations. We write down the Lagrangian and Hamiltonian for a
charged particle and introduce the Poisson brackets.
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Lagrangian

How to write equations of motion for a complicated mechanical
system, like the ones shown below?

Figure : A spherical pendulum and a rolling disk.
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Lagrangian

Each mechanical system is characterized by a Lagrangian function.
This function depends on generalized coordinates of the system,
q1, q2, . . . , qn, and velocities q̇1, q̇2,. . . , q̇n, and time t:
L(qi , q̇i , t) [for brevity, we will write L(qi , q̇i , t) instead of
L(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t)]. The number n is the number of
degrees of freedom for the system.
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Lagrangian

qi

t

qi
(1)

qi
(2)

t t1 2

Figure : The action reaches
an extremum along the
physical trajectory of the
system.

The Lagrangian has the following
property: the integral

S =

∫ t2
t1

L(qi , q̇i , t)dt (3.1)

(which is called the action) reaches an
extremum along the true trajectory of
the system when varies with fixed end
points.

This property can be used directly to find trajectories of a system by
numerically minimizing the action S . It is however not very practical, in
part because the varied trajectory is specified by its initial, q(t1), and
final, q(t2), positions. In applications we would prefer to specify a
trajectory by its initial position and velocity.
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Lagrangian

For mechanical systems, the Lagrangian is equal to the difference
between the kinetic energy and the potential energy of the system.
For example, for the pendulum, with the angle θ chosen as a
generalized coordinate q, the Lagrangian is

L(θ, θ̇) =
m

2
l2θ̇2 + gml cos θ . (3.2)

As was mentioned above, knowing the Lagrangian is enough to be
able to find trajectories of the pendulum by direct minimization of
the action.
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Lagrangian
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The most convenient approach to the
problem of obtaining equations of motion
for a given Lagrangian is based on the
variational calculus. By direct minimization
of the action integral, requiring

δ

∫ t2
t1

L(qi , q̇i , t)dt = 0 , (3.3)

one can get equations of motion in the following form (see proof
below):

∂L

∂qi
−

d

dt

∂L

∂q̇i
= 0 , i = 1, . . . , n . (3.4)

These are ordinary differential equations which are much easier to
solve than trying to directly minimize S .
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Clarification

What is d/dt? If we have a function f (q(t), q̇(t), t) then

df

dt
=
∂f

∂q
q̇ +

∂f

∂q̇
q̈ +

∂f

∂t

Given, for example, g(r(t), t)

dg

dt
=
∂g

∂x
· vx +

∂g

∂y
· vy +

∂g

∂z
· vz +

∂g

∂t

= v · ∇g +
∂g

∂t

so we can write in this case

d

dt
=
∂

∂t
+ v · ∇ =

∂

∂t
+ v · ∂

∂r
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Lagrangian

Let us prove (3.4). I assume 1 degree of freedom. Assume that q(t) is a
true orbit and q(t1) and q(t2) are fixed. Let δq(t) be a deviation from
this orbit; it has a property δq(t1) = δq(t2) = 0. Compute the variation
of the action:

δ

∫ t2
t1

L(q, q̇, t)dt =

=

∫ t2
t1

L(q + δq, q̇ + δq̇, t)dt −

∫ t2
t1

L(q, q̇, t)dt

=

∫ t2
t1

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt =

∫ t2
t1

(
∂L

∂q
−

d

dt

∂L

∂q̇

)
δqdt, (3.5)

where we used δq̇ = dδq/dt and integrated by parts. Since q(t) is a true
orbit, the action reaches an extremum on it, and the variation of the
action should be of second order, ∝ δq2. This means that the linear
variation that we found above vanishes for arbitrary δq, hence Eq. (3.4)
must be satisfied.
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Lagrangian

The Lagrangian for a given system is not unique. There exist
various forms of the Lagrangian for a physical system that lead to
the same equations of motion.
There are several advantages of using Lagrangian as a basic point
for formulation of equations of motion: a) easy to choose
convenient generalized coordinates, b) it is closely connected to
the variational principles, and c) it relates symmetries of the
Lagrangian to conservation laws for the system. A disadvantage is
that the Lagrangian approach sometimes obscures the nature of
the forces acting on the system.
A simple example of the relation between the symmetry of the
Lagrangian and the conservation laws is given by the case when L
does not depend on qi . As follows from Eqs. (3.4), in this case the
quantity ∂L/∂q̇i is conserved.
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Relativistic equations of motion in electromagnetic field

For a point charge q moving with velocity v we have

dp

dt
= qE + qv × B . (3.6)

On the right-hand side of this equation we have the Lorentz force.
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Lagrangian of a relativistic particle in an electromagnetic
field

This is the Lagrangian of a relativistic charged particle moving in
electromagnetic field represented by the vector potential A and the
scalar potential φ:

L(r , v , t) = −mc2
√

1 − v2/c2 + ev · A(r , t) − eφ(r , t) . (3.7)

In Cartesian coordinate system, r = (x , y , z), and the Lagrangian is
given as a function L(x , y , z , ẋ , ẏ , ż , t), where, of course, ẋ = vx ,
ẏ = vy , ż = vz .

The electric and magnetic fields are related to the potentials
through

E = −∇φ−
∂A

∂t
, B = ∇× A (3.8)
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Motion in uniform magnetic field

As an example of using the Lagrangian formalism, let us study
particle’s motion in a uniform magnetic field using the above
Lagrangian.
The field is directed along the z-axis:

B = (0, 0,B0) . (3.9)

It is easy to check that the vector potential can be chosen as

A = (−B0y , 0, 0) , (3.10)

so that B = ∇× A. This gives for the Lagrangian

L = −mc2
√

1 − v2/c2 − eB0vxy . (3.11)
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Motion in uniform magnetic field

For the equation of motion in the x direction

∂L

∂x
−

d

dt

∂L

∂vx
= 0

we observe that ∂L/∂x = 0 and

∂L

∂vx
= mc2γ

vx
c2

− eB0y

which gives

∂L

∂x
−

d

dt

∂L

∂vx
= mγv̇x − eB0vy = 0 . (3.12)

We introduced γ = (1 − β2)−1/2 with β = v/c .
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Motion in uniform magnetic field

In the last equation we used the fact that the motion in the
magnetic field conserves the kinetic energy, γ = const, hence
γ̇ = 0. The equation for vx reads

v̇x = ωHvy , (3.13)

where the cyclotron frequency ωH is

ωH =
eB0

γm
. (3.14)

Repeating the derivation for the y component gives

v̇y = −ωHvx . (3.15)

Combining Eqs. (3.13) and (3.15) yields v̈x +ωH
2vx = 0 , with

the solution vx = v0 cos(ωHt + φ0) .
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Motion in uniform magnetic field

From Eq. (3.13) we then obtain vy = −v0 sin(ωHt + φ0) .
Integrating velocities, we find coordinates:

x =
v0
ωH

sin(ωHt + φ0) + x0 , y =
v0
ωH

cos(ωHt + φ0) + y0 .

(3.16)

This is a circular orbit with the radius (Larmor radius)

R =
v0
ωH

=
p

eB0
. (3.17)

For the z-direction we have

d

dt

∂L

∂vz
= 0 =⇒ v̇z = 0 =⇒ vz = const .

(3.18)
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From Lagrangian to Hamiltonian

Another way to describe motion of a system is to use the
Hamiltonian approach. It has many advantages over the
Lagrangian one.
A transition from the Lagrangian to the Hamiltonian is made in
three steps. First, we define the generalized momenta pi :

pi =
∂L(qk , q̇k , t)

∂q̇i
, i = 1, . . . , n . (3.19)

Second, we solve these equations and express q̇i in terms of qi , pi
and t

q̇i = q̇i (pk , qk , t) , i = 1, . . . , n . (3.20)
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From Lagrangian to Hamiltonian

Third, we make a Hamiltonian function H,

H =

(
n∑

i=1

pi q̇i

)
− L(qk , q̇k , t) , (3.21)

and express all q̇i on the right hand side through qi , pi and t using
Eqs. (3.20) so that we get the Hamiltonian as a function of
variables qi , pi and t: H(q1, p1, . . . , qn, pn, t).
With the Hamiltonian, the equations of motion become:

ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
. (3.22)

The variables pi and qi are called the canonically conjugate
variables.

54/441



From Lagrangian to Hamiltonian

Let us prove (3.22). I assume one degree of freedom. Keep in
mind that L(q, q̇(q, p, t), t)

−

(
∂H

∂q

)
p

= −
∂

∂q
(pq̇ − L)

=

(
−p
∂q̇

∂q
+
∂L

∂q̇

∂q̇

∂q

)
+
∂L

∂q
=
∂L

∂q

=
d

dt

∂L

∂q̇
=

dp

dt
(3.23)

(
∂H

∂p

)
q

=
∂

∂p
(pq̇ − L)

= q̇ +

(
p
∂q̇

∂p
−
∂L

∂q̇

∂q̇

∂p

)
= q̇ (3.24)
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Hamiltonian of a charged particle in an electromagnetic
field

We start from the Lagrangian (3.7)

L(r , v , t) = −mc2
√

1 − v2/c2 + ev · A(r , t) − eφ(r , t),

where r = (x , y , z) and v = (vx , vy , vz). First, we need to find the
canonical conjugate momentum which we denote by π combining
into vector notation three cartesian coordinates (πx , πy , πz):

π =
∂L

∂v

= −mc2
∂
√

1 − v2/c2

∂v
+ eA

= m
v√

1 − v2/c2
+ eA = mγv + eA . (3.25)

Note that the conjugate momentum π differs from the kinetic
particle’s momentum mγv .
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Hamiltonian of a charged particle in an electromagnetic
field

Note that as follows from the previous equation,
γβ = (π− eA)/mc , and hence

γ2β2 =
(π− eA)2

m2c2
. (3.26)

Now let us derive the Hamiltonian

H = v · π− L

= v · π+mc2
√

1 − v2/c2 − ev · A+ eφ

= mγv2 +
mc2

γ
+ eφ

= mγc2
(
β2 +

1

γ2

)
+ eφ

= mγc2 + eφ . (3.27)
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Hamiltonian of a charged particle in an electromagnetic
field

The Hamiltonian is the sum of the energy mγc2 and the potential
energy associated with the electrostatic potential φ. The vector
potential is hidden in Eq. (3.27). To see that, remember, the we
need to express H in terms of the conjugate coordinates and
momenta. Using Eq. (3.26) we obtain:

γ2 = 1 + γ2β2 = 1 +
(π− eA)2

m2c2
, (3.28)

which gives for the Hamiltonian

H =
√
(mc2)2 + c2(π− eA)2 + eφ . (3.29)

This is the Hamiltonian of a charged particle in electromagnetic
field.
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Poisson brackets

Let f (qi , pi , t) be a function of coordinate, momenta and time. Assume
that coordinates and momenta evolve according to the Hamilton
equations, and qi (t) and pi (t) represent a trajectory. Then f becomes a
function of time t only: f (qi (t), pi (t), t). What is the derivative of this
function with respect to time? We have

df

dt
=
∂f

∂t
+
∑
i

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
. (3.30)

Substituting Eqs. (3.22) into these equations gives

df

dt
=
∂f

∂t
+
∑
i

(
∂f

∂qi

∂H

∂pi
−
∂f

∂pi

∂H

∂qi

)
=
∂f

∂t
+ {H, f } , (3.31)

where we introduced the Poisson brackets

{H, f } =
∑
i

(
∂H

∂pi

∂f

∂qi
−
∂H

∂qi

∂f

∂pi

)
. (3.32)
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Poisson brackets

Poisson brackets have many remarkable properties. We will use the
following two in the next lectures. For two functions f (qi , pi , t)
and g(qi , pi , t)

{g , f } = −{f , g } , (3.33)

and also

{f , f } = 0 . (3.34)

It is easy to verify that following identities hold

{qi , qk } = {pi , pk } = 0 , {pi , qk } = δik . (3.35)

If the Hamiltonian H(qi (t), pi (t), t) is considered as a function of
time then

dH

dt
=
∂H

∂t
+ {H,H} =

∂H

∂t
(3.36)
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Canonical transformations
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Lecture outline

We will introduce and discuss canonical transformations that
conserve the Hamiltonian structure of equations of motion.
Poisson brackets are used to verify that a given transformation is
canonical. A practical way to devise canonical transformation is
based on usage of generation functions.
The motivation behind this study is to understand the freedom
which we have in the choice of various sets of coordinates and
momenta. Later we will use this freedom to select a convenient set
of coordinates for description of partilcle’s motion in an accelerator.
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Introduction

Within the Lagrangian approach we can choose the generalized
coordinates as we please. We can start with a set of coordinates qi
and then introduce generalized momenta pi according to Eqs.

pi =
∂L(qk , q̇k , t)

∂q̇i
, i = 1, . . . , n ,

and form the Hamiltonian

H =

(∑
i

pi q̇i

)
− L(qk , q̇k , t) .

Or, we can chose another set of generalized coordinates
Qi = Qi (qk , t), express the Lagrangian as a function of Qi , and
obtain a different set of momenta Pi and a different Hamiltonian
H ′(Qi ,Pi , t). This type of transformation is called a point
transformation. The two representations are physically equivalent
and they describe the same dynamics of our physical system.

63/441



Introduction

A more general approach to the problem of using various variables
in Hamiltonian formulation of equations of motion is the following.
Let us assume that we have canonical variables qi , pi and the
corresponding Hamiltonian H(qi , pi , t) and then make a
transformation to new variables

Qi = Qi (qk , pk , t) , Pi = Pi (qk , pk , t) . i = 1 . . . n. (4.1)

Can we find a new Hamiltonian H ′(Qi ,Pi , t) such that the system
motion in new variables satisfies Hamiltonian equations with H ′?
What are requirements on the transformation (4.1) for such a
Hamiltonian to exist?
These questions lead us to canonical transformations. They are
more general than point transformations and they can depend on q̇.
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Canonical transformations

We first consider a time independent Hamiltonian H, and later
generalize the result for the case when H is a function of time. Let
us assume that we have canonical variables qi , pi and the
Hamiltonian H(qi , pi ).

q
i

P
i

p
i

Q
i

Instead of qi , pi we would like to use a new set of independent
variables Qi , Pi that are related to the old one,

Qi = Qi (qk , pk) , Pi = Pi (qk , pk) , i = 1 . . . n. (4.2)
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Canonical transformations

We assume that the inverse transformation from Qi , Pi to qi , pi
exists and write it as follows

qi = qi (Qk ,Pk) , pi = pi (Qk ,Pk) , i = 1 . . . n. (4.3)

It is obtained by considering Eqs. (4.2) as 2n equations for the old
variables and solving them for qi , pi .
For simplicity I consider n = 1 and drop indexes. Let us introduce
a function H ′ which is H expressed in terms of new variables (we
do not know yet if H ′ can be used as a Hamiltonian) :

H ′(Q,P) = H(q(Q,P), p(Q,P)) . (4.4)

Let us assume that we solved Hamiltonian equations of motion and
found a trajectory q(t), p(t). This trajectory gives us an orbit in
new variables as well, through the transformation (4.2):

Q(t) = Q(q(t), p(t)) , P(t) = P(q(t), p(t)) . (4.5)
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Canonical transformations

We would like the trajectory defined by the functions Q(t) and
P(t) to be a Hamiltonian orbit, that is to say that we would like it
to satisfy the equations

dP

dt
= −

∂H ′(Q(t),P(t))

∂Q
,

dQ

dt
=
∂H ′(Q(t),P(t))

∂P
. (4.6)

If these conditions are satisfied for every Hamiltonian H, then Eqs.
(4.2) give us a canonical transformation.
Here are two trivial examples of canonical transformations:

Q = p , P = −q . (4.7)

Q = −p , P = q . (4.8)

67/441



When is a transformation canonical?

How to find out if a given transformation (4.2) is canonical? It
turns out that it is canonical if and only if

{Q,Q}q,p = 0 , (4.9)

{P,P}q,p = 0 , (4.10)

{P,Q}q,p = 1 . (4.11)

Proof is in the lecture notes. Note that the form of the
Hamiltonian is not used, except to define the original canonical
momenta.
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Example: Point transformation

Given Q = fQ(q, t), then new momentum P = p/(∂fQ/∂q).
Note that if p = 0, then P = 0. We can apply a shift in coordinate
system, but momentum still has a sense of proportionality. In
particular, an object at rest should have zero velocity in any
coordinate system.
We have

{P,Q}q,p =
∂P

∂p

∂Q

∂q
−
∂P

∂q

∂Q

∂p
=

1

∂fQ/∂q

∂fQ
∂q

+ 0 = 1 .

This is a small subset of possible canonical transformations.
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Example: Linear combination

Given:

Q = aq + bp, P = cq + dp.

When this variable transformation is canonical? Compute Poisson
brackets

{Q,Q}q,p = {P,P}q,p = 0

{P,Q}q,p =
∂P

∂p

∂Q

∂q
−
∂P

∂q

∂Q

∂p
= ad − cb = 1

The determinant of the matrix(
a b
c d

)
should be equal to 1.
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Generating functions

Poisson brackets do not give us a method to generate canonical
transformations. The technique which allows one to create a
transformation that is guaranteed to be canonical is based on the
so called generating functions.
We will give a complete formulation of the method of generation
functions in the next section. Here, we consider a special case of a
generating function which is a function of coordinates qi and new
coordinated Qi . Let us denote such a function by F1,

F1(qi ,Qi ) . (4.12)

The canonical transformation associated with this function is given
by the following equations:

pi =
∂F1(qi ,Qi )

∂qi
, Pi = −

∂F1(qi ,Qi )

∂Qi
, i = 1 . . . n .

(4.13)
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Generating functions

These equations should be considered as equations for Qi and Pi .
Solving the equations we find the transformation (4.2). It turns
out that this transformation is canonical.
We will prove that Eqs. (4.13) define a canonical transformation in
the case of one degree of freedom and time-independent. In this
case, we have only two conjugate variables, q and p, and a
canonical transformation (4.2) is given by two equations

Q = Q(q, p) , P = P(q, p) . (4.14)

The generating function F1(q,Q) is a function of two variables,
and from (4.13) we have

p =
∂F1(q,Q)

∂q
, P = −

∂F1(q,Q)

∂Q
. (4.15)
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Proof for 1 degree of freedom

We first note that for one degree of freedom, the conditions
{Q,Q} = 0 and {P,P} = 0 are trivially true, because there are no
cross terms from other degrees of freedom. We only need to prove

{P,Q}q,p =
∂P

∂p

∂Q

∂q
−
∂P

∂q

∂Q

∂p
= 1 . (4.16)

We now have to remember to characterize the generating function
as F1(q,Q(q, p)). From the second of Eqs. (4.15) we have

∂P

∂q
= −

∂2F1
∂Q∂q

−
∂2F1
∂Q2

∂Q

∂q
,

∂P

∂p
= −

∂2F1
∂Q2

∂Q

∂p
. (4.17)
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Proof for 1 degree of freedom (cont’d)

Substituting these equation into Eq. (4.16) we obtain

∂P

∂p

∂Q

∂q
−
∂P

∂q

∂Q

∂p
=
∂2F1
∂Q∂q

∂Q

∂p
. (4.18)

The derivative ∂Q/∂p can be found when we differentiate the first
of equations (4.15) with respect to p:

1 =
∂2F1
∂q∂Q

∂Q

∂p
, (4.19)

and we see that RHS of (4.18) is equal to 1, which means

{P,Q}q,p = 1 . (4.20)
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Generating functions

The functions (4.12) are not the only type of functions that
generate canonical transformations. Below we will list other types
that can be used for this purpose. Before that, however, we need
to generalize our result for the time dependent transformations and
time dependent Hamiltonians.

75/441



Four types of generating functions

Canonical transformations can be time dependent,

Qi = Qi (qk , pk , t) , Pi = Pi (qk , pk , t) . i = 1 . . . n. (4.21)

They can be applied to time dependent Hamiltonians as well. The
Poisson brackets are still applicable in this case, and Eqs. (4.9) -
(4.11) are necessary and sufficient conditions for a transformation
to be canonical (the variable t can be considered as a parameter in
calculation of the Poisson brackets). However, the simple rule
(4.4) for obtaining a new Hamiltonian needs to be modified for the
general case of time dependent transformations.
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Four types of generating functions

Previously we introduced the generating function F1(qi ,Qi ). This
is only one of four possible types of the generating functions. All
generating functions depend on a set of old coordinates and a set
of new ones. These sets come in the following combinations:
(qi ,Qi ), (qi ,Pi ), (pi ,Qi ), and (pi ,Pi ). Correspondingly, we have 4
types of the generating function. The rules how to make a
canonical transformation for each type of the generating function,
and the associated transformation of the Hamiltonian, are shown
below.
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Four types of generating functions

The first type of the generating functions is F1(qi ,Qi , t):

pi =
∂F1
∂qi

, Pi = −
∂F1
∂Qi

,

H ′ = H +
∂F1
∂t

. (4.22)

The second type is F2(qi ,Pi , t):

pi =
∂F2
∂qi

, Qi =
∂F2
∂Pi

,

H ′ = H +
∂F2
∂t

. (4.23)
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Four types of generating functions

The third type is F3(pi ,Qi , t):

qi = −
∂F3
∂pi

, Pi = −
∂F3
∂Qi

,

H ′ = H +
∂F3
∂t

. (4.24)

The fourth type is F4(pi ,Pi , t):

qi = −
∂F4
∂pi

, Qi =
∂F4
∂Pi

,

H ′ = H +
∂F4
∂t

. (4.25)
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Example of canonical transformations

We first consider a simple example of the identity transformation

Qi = qi , Pi = pi . (4.26)

The generating function of the second type for this transformation
is

F2 =
n∑

i=1

qiPi . (4.27)
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Revisit point transformations

We now go back to point transformations, Qj = fQj({qk }, t). We
will show that

F2 =
n∑

i=1

fQi ({qk }, t)Pi (4.28)

and that the dynamics for the modified Langrangian agrees with
the additional term ∂F2/∂t.
The generating function yields

pj =
∂F2
∂qj

=

n∑
i=1

∂fQi

∂qj
Pi =

n∑
i=1

WijPi , (4.29)

where Wij ≡ ∂fQi/∂qj . Therefore,

Pj =

n∑
i=1

piW
−1
ij (4.30)
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Revisit point transformations

The new Hamiltonian is given by

H ′ = H +
∂F2
∂t

= H +

n∑
i=1

∂fQi

∂t
Pi . (4.31)

In terms of the original Lagrangian, we have the same action
integral (it gets a little more complicated for more general cases,
add a total time derivative to L ′):

S =

∫ t2
t1

L(qi , q̇i , t) dt =

∫ t2
t1

L ′(Qi , Q̇i , t) dt (4.32)

so L = L ′. Also, by definition of the transformation,

Q̇i =

n∑
k=1

∂fQi

∂qk
q̇k +

∂fQi

∂t
. (4.33)
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Revisit point transformations

If the original conjugate momentum was pi = ∂L/∂q̇i , then the
new conjugate momentum has to satisfy

pj =
∂L

∂q̇j
=

n∑
i=1

∂L ′

∂Q̇i

∂Q̇i

∂q̇j
=

n∑
i=1

∂L ′

∂Q̇i

∂Qi

∂qj
=

n∑
i=1

PiWij . (4.34)

This is exactly what we found from the generating function. Also,
the new Hamiltonian is

H ′ =
n∑

i=1

Pi Q̇i − L ′ =
n∑

i=1

n∑
j=1

pjW
−1
ji

(
n∑

k=1

q̇kWik +
∂fQi

∂t

)
− L

=

n∑
j=1

pj q̇j +
n∑

i=1

n∑
j=1

pjW
−1
ji

∂fQi

∂t
− L = H +

∂F2
∂t

. (4.35)

So at least for point transformations, the formulas for generating
functions match the requirements for going from a Lagrangian to a
Hamiltonian exactly.
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Action-angle variables for linear oscillator

We now show how canonical transformations can be applied to the
harmonic oscillator. The Hamiltonian for an oscillator with a unit mass is

H =
p2

2
+
ω2x2

2
. (4.36)

It gives the following equations of motion: ṗ = −∂H/∂x = ω2x ,
ẋ = ∂H/∂p = p with the solution

x = a cos(ωt + φ0) , p = −aω sin(ωt + φ0) . (4.37)

We would like to introduce a set of new variables, J (new momentum)
and φ (new coordinate), such that the transformation from new to old
coordinates would be

x = a(J) cosφ , p = −a(J)ω sinφ . (4.38)

The advantage of the new variables is clear: the new momentum J is a
constant of motion (because a = const), and the new coordinate evolves
in a simple way, φ = ωt + φ0.
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Action-angle variables for linear oscillator

We will use a generating function F1(x , φ) of the first type. To
find this function, we need to express p in terms of the old and
new coordinates

p = −ωx tanφ . (4.39)

Integrating the equation p = (∂F1/∂x)φ, we find

F1(x , φ) =

∫ x
pdx̃ = −

ωx2

2
tanφ . (4.40)
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Aside on generating functions

In general, the generating function needs to satisfy

F =

∫q
p dq̃ for F1 or F2 (4.41)

or

F = −

∫p
q dp̃ for F3 or F4 (4.42)

For F1, Q will be held fixed. For F2, P will be held fixed, which is
more “natural” for going to action-angle variables.
The math is less tedious using F1, that is the only motivation for
using this form. In fact there is a relation between the two; given
any F1, we can get the same result using F2(q,P) =

∑
PQ + F1.

This is a type of Legendre transform.
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Action-angle variables for linear oscillator

We have

J = −
∂F1
∂φ

=
ωx2

2

1

cos2φ

=
ωx2

2
(1 + tan2φ)

=
ωx2

2

(
1 +

p2

ω2x2

)
=

1

2ω

(
ω2x2 + p2

)
. (4.43)

This equation expresses the new momentum in terms of the old
variables. The new coordinate can be found from Eq. (4.39)

φ = − arctan
p

ωx
. (4.44)
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Action-angle variables for linear oscillator

The new Hamiltonian is a function of the new momentum only

H = ωJ , (4.45)

and gives the following equations of motion in new variables:

J̇ = −
∂H

∂φ
= 0 , φ̇ =

∂H

∂J
= ω. (4.46)

The oscillator dynamics looks very simple in new coordinates:

J = const , φ = ωt + φ0 . (4.47)

The (J, φ) pair is called the action-angle coordinates for this
particular case. They are very useful for building a perturbation
theory in a system which in the zeroth approximation reduces to a
linear oscillator.
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Action-angle variables for linear oscillator

Here are expressions for old variables in terms of the new ones

x =

√
2J

ω0
cosφ

p = −
√

2Jω0 sinφ (4.48)

This follows from (4.43) and (4.44).
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Hamiltonian flow in phase space
and Liouville’s theorem

(Lecture 5)

June 11, 2013
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Lecture outline

We will discuss the Hamiltonian flow in the phase space. This flow
represents a time dependent canonical transformation of the
Hamiltonian variables.
We then discuss conservation of the phase volume in the
Hamiltonian flow (Liouville’s theorem).
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Hamiltonian flow in phase space

We will now take another look at the Hamiltonian motion focusing
on its geometrical aspect. Let us assume that for a Hamiltonian
H(qi , pi , t), for every set of initial condition p0i , q0i from some
domain at time t0 we can solve the equations of motion starting
from time t0 and find the values pi , qi at time t. This gives us a
map

pi = pi (p
0
i , q

0
i , t0, t) , qi = qi (p

0
i , q

0
i , t0, t) . (5.1)
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Hamiltonian flow in phase space

Considering the time t as a variable we will move each point
(qi , pi ) along a trajectory in the phase space. A collection of such
trajectories with various initial conditions (q0i , p

0
i ) constitutes a

Hamiltonian flow.
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Hamiltonian flow is canonical

A remarkable feature of the relations (5.1) is that, for a given t0
and t, they constitute a canonical transformation from p0i , q0i to
pi , qi , which is also called a symplectic transfer map. We will
prove the canonical properties of this map for one degree of
freedom. In this case we can drop the index pi → p, qi → q, etc.
We will also focus only on one of the Poisson brackets, {p, q}q0,p0 ;
the two others can be analyzed in a similar way.
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One degree of freedom

In our proof we demonstrate that the time derivative of the
Poisson bracket {p, q}q0,p0 is equal to zero at t = t0. Since t0 can
be considered as an arbitrary moment of time, this means that the
time derivative of the Poisson bracket is identically equal to zero at
all times. And the conservation of the Poisson brackets in time
means that the map (5.1) remains symplectic for all values of t.
Note that at t = t0 the map (5.1) becomes an identity
transformation, p = p0, q = q0, and obviously

{p, q}q0,p0
∣∣
t=t0

= 1 . (5.2)
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Proof

We only calculate the time derivative of {pq}q0,p0 ; the other
brackets can be analyzed in a similar way. We have

d

dt
{p, q}q0,p0 =

d

dt

(
∂p

∂p0

∂q

∂q0
−
∂p

∂q0

∂q

∂p0

)
(5.3)

=
∂q

∂q0

∂

∂p0

dp

dt
+
∂p

∂p0

∂

∂q0

dq

dt
−
∂q

∂p0

∂

∂q0

dp

dt
−
∂p

∂q0

∂

∂p0

dq

dt

= −
∂q

∂q0

∂

∂p0

∂H

∂q
+
∂p

∂p0

∂

∂q0

∂H

∂p
+
∂q

∂p0

∂

∂q0

∂H

∂q
−
∂p

∂q0

∂

∂p0

∂H

∂p
.

Using the chain rules for calculation of the partial derivatives

∂

∂p0
=
∂p

∂p0

∂

∂p
−
∂q

∂p0

∂

∂q
,

∂

∂q0
=
∂p

∂q0

∂

∂p
−
∂q

∂q0

∂

∂q
(5.4)

it is easy to show that all the terms on the right hand side of (5.3)
cancel out and d{p, q}q0,p0/dt = 0.

96/441



Symplectic maps

In accelerator context we might have a beam diagnostic at one
location of the ring, which measures coordinates of a bunched
beam when it passes by at time t0. On the next turn, at time
t = t0 + T , where T is the revolution period in the ring, it
measures coordinates again. The relation between the new and the
old coordinates for various particles in the beam will be given by
the functions (5.1).
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Symplectic maps

The different language of symplectic maps is often used in
connection with this type of canonical transformation. A linear
map M is defined as symplectic if

MJ2nM
T = J2n , (5.5)

with

J2n =


J2 0 0 0
0 J2 0 0

0 0
. . . 0

0 0 0 J2

 , and J2 =

(
0 −1
1 0

)
.

(5.6)

It is clear the determinant of M must be equal to ±1. What is
more difficult to see is that only detM = 1 is possible.
This is not a sufficient condition except for special case of 1 degree
of freedom.
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Symplectic maps

Let us consider the transformation Qi = Qi (qk , pk),
Pi = Pi (qk , pk), i = 1 . . . n, and change the notation introducing
w2k−1 = qk , w2k = pk , W2k−1 = Qk , W2k = Pk , k = 1, 2, . . . n.
For examples, for n = 2 we have w1 = q1, w2 = p1, w3 = q2,
w4 = p2, and the same set of relations with small letters replaced
by the capital ones.
A transformation from old to new variables is then given by 2n
functions

Wi = Wi (wk), i , k = 1, 2, . . . 2n . (5.7)
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Symplectic maps

It turns out that the requirement that all possible Poisson brackets
satisfy {Qi ,Qk }q,p = 0, {Pi ,Pk }q,p = 0, {Pk ,Qi }q,p = δik , (which is
equivalent to the requirement for the transformation to be
canonical) can be written as

MJ2nM
T = J2n , (5.8)

where M is the Jacobian matrix of the transformation (with the
elements Mi ,j = ∂Wi/∂wj) and the superscript T denotes
transposition of a matrix. This must hold true throughout phase
space.
The transformation can be nonlinear, but locally about any region
in phase space it must look like a symplectic linear map.
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Liouville’s theorem

A general Hamiltonian flow in the phase space conserves several
integrals of motion. The most important one is the volume
occupied by an ensemble of particles. Conservation of the phase
space volume is called the Liouville theorem.

The phase space volume is expressed as a 2n-dimensional integral

V1 =

∫
M1

dq1dq2 . . . dqndp1dp2 . . . dpn , (5.9)

where the integration goes over a 2n-dimensional manifold M1 in
the phase space. A canonical transformation maps the manifold
onto a different one M2, and the new volume phase space is

V2 =

∫
M2

dQ1dQ2 . . . dQndP1dP2 . . . dPn . (5.10)
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Liouville’s theorem

The ratio of elementary volumes, as is known from the
mathematical analysis is equal to the determinant of the Jacobian
of the transformation M∣∣∣∣dQ1dQ2 . . . dQndP1dP2 . . . dPn

dq1dq2 . . . dqndp1dp2 . . . dpn

∣∣∣∣ = |detM | . (5.11)

Using Eq. (5.5) it is easy to prove that |detM | = 1.
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Extended canonical transformations

It is useful to define an extended Hamiltonian by including not just
time but the energy itself as variables, arranged in a pair with time
acting as the coordinate and energy (almost) as the conjugate
momentum.

Hext(q, p, t, pt) ≡ H(q, p, t) + pt (5.12)

with pt = −H(q, p, t) required as a constraint. Usually we write
pt = −h; be careful with signs.
Now we have the simple constraint Hext = 0. New equations of
motion are dt/dt = 1, dh/dt = dH/dt = ∂H/∂t. No change.
What we get is a more general class of canonical transformations
that can explicitly involve time and energy and alter them.
Generating functions work the same way, with extra minus signs
when h is used instead of pt .
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Interpretation of extended phase space

We started with the variational principle to minimize

S =

∫ t2
t1

L(qi , q̇i , t) dt (5.13)

A simple co-ordinate change yields

S =

∫τ2
τ1

L

[
qi (τ),

q′i (τ)

t ′(τ)
, t(τ)

]
t ′(τ) dτ , (5.14)

where t ′ ≡ dt/dτ and q′i ≡ dqi/dτ = t ′dqi/dt = t ′q̇i . Now we can
treat time t as just another co-ordinate, on an equal footing with
the others. This gives us a new Lagrangian with an extra degree of
freedom,

Lext(qi , t, q
′
i , t
′) = L

(
qi ,

q′i
t ′
, t

)
t ′ . (5.15)
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Example: scale change

The simplest transformation is to redefine time according to
t̂ = fT (t). The generating function is F2 = fT (t)ĥ. Then

Ĥext(p, q, t̂,−ĥ) = [H(p, q, t) − h]
dfT
dt

=

[
H(p, q, t)

dfT
dt

− ĥ

]
. (5.16)

This is consistent with the conjugate to t̂ being h dt/dt̂, similar to
how the Lagrangian changes with a rescaling of time.
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Example: swapping a co-ordinate with time

The idea for replacing the independent variable with a co-ordinate
is simple. Since time looks like a co-ordinate, it is (up to a sign)
the same type of generating function as a swap between x and y :

F2 = xPx + yPy − sE + tPs (5.17)

Transverse co-ordinates are unaffected, but

ps = −E , e = −Ps , S = t , T = s (5.18)

Call the new (regular phase space) Hamiltonian K, with new
extended Hamiltonian K − E = K + ps which has to equal 0. We
find K by solving

H (x , y , s, px , py ,−K (x , y , t, px , py ,−e, s) , t) − e = 0 . (5.19)

If H is independent of t, then K does as well. The dynamic
equations are e ′ = −∂K/∂t = 0, t ′ = −∂K/∂e.
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Example: Lorentz transformation

The generating function for the Lorentz transformation (ignoring
transverse coordinates) is

F2(q, t,P,E ) = γ

[
Pq − Et − v

(
Pt −

Eq

c2

)]
. (5.20)

Here v is the velocity shift, γ = (1 − v2/c2)−1/2. This yields

p = γ(P + Ev/c2) , e = γ(E + vP) ,

Q = γ(q − vt) , T = γ(t − vq/c2) . (5.21)
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Coordinate system and Hamiltonian
in a circular accelerator

(Lecture 6)

June 12, 2013
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Lecture outline

We first introduce a special coordinate system for a circular
accelerator and write equations of motion in that system. We then
switch to the Hamiltonian in which the coordinate s plays a role of
time. Finally, we make a small-amplitude approximation in the
Hamiltonian and derive a simplified expression for it.
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Setup

We assume that there is no electrostatic fields, φ = 0, and the
magnetic field is static. The magnetic field directs particle’s
motion in such a way that the particle is moving in a closed orbit.
This reference orbit is established for a particle with the nominal
momentum p0 (= mγ0v0). Our goal is to describe particles’
motion in the vicinity of this reference orbit, with energies
(momenta) that can slightly deviate from the nominal one. We will
also assume that the reference orbit is a plane curve.
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Reference orbit

A reference orbit and Cartesian coordinate system X , Y and Z .

It is given by the vector r0(s), where
s is the arclength measured along the
orbit in the direction of motion. We
define three unit vectors. Vector ŝ
is the tangential vector to the orbit,
ŝ = dr0/ds. Vector, x̂ , is perpendic-
ular to ŝ and lies in the plane of the
orbit. Vector ŷ is ŷ = ŝ× x̂ . It is per-
pendicular to the plane of the orbit,
and hence to ŝ and x̂

The three vectors x̂ , ŷ , and ŝ constitute a right-hand oriented base for
the local coordinate system. The coordinate x is measured along x̂ , and
the coordinate y is measured along ŷ .
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Reference orbit

Note that simultaneously flipping the directions of vectors x and y
is allowable, because it transforms a right-hand oriented coordinate
system to another one.
If the direction of the motion is reversed (e.g., by changing the
direction of the magnetic field or the sign of charge of the
particles), then vector ŝ changes direction. To keep the local
coordinate system right-handed, the direction of vector x̂ is usually
reversed too. y

x

y

x

y

x y

x
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Reference orbit

From the differential geometry (the so called Frenet-Serret
formulas) we have the following relations between the derivatives
of vectors r0, ŝ, x̂ , and ŷ :

dr0
ds

= ŝ ,

dŝ

ds
= −

x̂

ρ(s)
,

dx̂

ds
=

ŝ

ρ(s)
,

dŷ

ds
= 0 . (6.1)
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Deviations from reference orbit

Since we assumed that the orbit is plane, the magnetic field on the
orbit can only have y (vertical field) and s (solenoidal field)
components. The bending radius ρ is given by the following
equation (recall (3.17))

ρ(s) =
p0

eBy (s)
. (6.2)

Most of the particles in the beam deviate from the reference orbit,
although they move close to it. Our goal to describe motion of
these particles.
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Coordinate system

Each point in the vicinity of the central orbit can be represented in
the local coordinate system.

In this system a radius vector r is represented by coordinates s, x ,
and y such that

r = r0(s) + xx̂(s) + y ŷ . (6.3)
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Derivatives in curvilinear coordinate system

Useful formulae for the gradient of a scalar function φ(x , y , s), and
for the curl and divergence of a vector function A = (Ax(x , y , s),
Ay (x , y , s),As(x , y , s)):

∇φ = x̂
∂φ

∂x
+ ŷ

∂φ

∂y
+ ŝ

1

1 + x/ρ

∂φ

∂s
, (6.4)

(∇× A)x = −
1

1 + x/ρ

∂Ay

∂s
+
∂As

∂y
, (6.5)

(∇× A)s = −
∂Ax

∂y
+
∂Ay

∂x
, (6.6)

(∇× A)y = −
1

1 + x/ρ

∂As(1 + x/ρ)

∂x
+

1

1 + x/ρ

∂Ax

∂s
, (6.7)

∇ · A =
1

1 + x/ρ

∂Ax(1 + x/ρ)

∂x
+
∂Ay

∂y
+

1

1 + x/ρ

∂As

∂s
, (6.8)

[remember that ρ = ρ(s)].
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Hamiltonian, canonical transformation to new variables

The Hamiltonian for a charged particle is

H =
√
(mc2)2 + c2(π− eA)2 . (6.9)

This Hamiltonian was derived for a Cartesian coordinate system
which coordinates we denote X , Y and Z . We now want to obtain
a Hamiltonian in the coordinate system related to the reference
orbit. We will use generating functions to transform the
Hamiltonian to the new coordinates.
As a first step, we choose local coordinates s, x , and y as
coordinate variables of our new Hamiltonian. To carry out a
transformation from the original Cartesian coordinates X , Y and Z
to the new ones, we will a the generating function of the third type:

F3(π, x , y , s) = −π · (r0(s) + xx̂(s) + y ŷ) . (6.10)

In this equation π = (πX , πY , πZ ) is the old momentum and x , y
and z are the new coordinates.
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Hamiltonian, canonical transformation to new variables

We denote by Π = (Πx , Πy , Πs) the new canonical momentum
(see Eqs. for the generating function F3)

Πx = −
∂F3
∂x

= π · x̂ = πx ,

Πy = −
∂F3
∂y

= π · ŷ = πy ,

Πs = −
∂F3
∂s

= π ·
(
dr0
ds

+ x
dx̂

ds

)
= π ·

(
ŝ +

x

ρ
ŝ

)
= πs

(
1 +

x

ρ

)
. (6.11)

118/441



Hamiltonian, canonical transformation to new variables

Note that

(π− eA)2 = (πx − eAx)
2 + (πy − eAy )

2 + (πs − eAs)
2 (6.12)

= (Πx − eAx)
2 + (Πy − eAy )

2 +

(
Πs

1 + x/ρ
− eAs

)2

,

and our Hamiltonian becomes

H = c

[
m2c2 + (Πx − eAx)

2 + (Πy − eAy )
2 +

(
Πs

1 + x/ρ
− eAs

)2
]1/2

.

(6.13)

We have used the notation Ax = A · x̂ , Ay = A · ŷ , and As = A · ŝ.
[Some authors use As = (1 + x/ρ)A · ŝ.]
Eq. (6.13) is our new Hamiltonian as a function of new
coordinates x , y , s and new conjugate momenta Πx , Πy and Πs .
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Using s as a time variable

A particle has three degrees of freedom with the Hamiltonian
which is a constant of motion because it does not depend on time
t. Using this fact we can lower the number of degrees of freedom
from 3 to 2. To do this, we choose the variable s as an
independent variable instead of the time t.
Let us assume that we solved equations of motion and found all the
variables as functions of time, x(t), y(t), s(t), etc. Then we invert
the expression s = s(t) to find t(s), and x(t) → x(t(s)) ≡ x(s).
We can do the same trick with coordinate y and components of
the momentum Π, and define y(s) and Π(s).

In accelerators beam diagnostics are located at given s, so it is
often natural to work with x(s) and y(s) rather than with x(t) and
y(t).
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Using s as a time variable

It turns out that the dependence of x , y , Πx , and Πy versus s, can
be found from Hamiltonian equations of motion, using a new
Hamiltonian with 2 pairs of conjugate variables. We first formulate
how to calculate this new Hamiltonian, and then prove that using
the formulated approach we indeed obtain the new equations of
motion for the two pairs of the canonically conjugate variables.
Let us write down the following equation:

h = H(x , Πx , y , Πy , s, Πs) , (6.14)

(where H is given by (6.13)) and solve it for Πs

Πs = Πs(x , Πx , y , Πy , s, h) . (6.15)

Here h is the value of the Hamiltonian H. Because our
Hamiltonian does not depend on time, the value of H is constant
along each orbit, the value of the Hamiltonian is equal to γmc2.
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New Hamiltonian

Let us introduce now a new Hamiltonian K

K (x , Πx , y , Πy , s, h) = −Πs(x , Πx , y , Πy , s, h) , (6.16)

in which x , Πx , y , Πy are canonical conjugate variables, s is an
independent “time” variable, and h is a (constant) parameter. The
Hamiltonian K has two pairs of conjugate variables, and hence
describes motion of a system which has two degrees of freedom.
However, this Hamiltonian depends on “time” s.
We now show that dependence x(s), Πx(s), y(s), and Πy (s) are
governed by the Hamiltonian (6.16). We have to remember that,
e.g., x(s) is obtained from x(t) and s(t) by eliminating the
variable t, and x(t) with s(t) are governed by the original
Hamiltonian H. We have for dx/ds

dx

ds
=

dx/dt

ds/dt
=
∂H/∂Πx

∂H/∂Πs
. (6.17)
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New Hamiltonian

On the other hand, the derivative ∂K/∂Πx can be calculated as a
derivative of an implicit function

∂K

∂Πx
= −

(
∂Πs

∂Πx

)
H

=
∂H/∂Πx

∂H/∂Πs
, (6.18)

and we see that

dx

ds
=
∂K

∂Πx
. (6.19)

The same approach works for Πx ,

dΠx

ds
=

dΠx/dt

ds/dt
=

−∂H/∂x

∂H/∂Πs
=

(
∂Πs

∂x

)
H

= −
∂K

∂x
. (6.20)
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New Hamiltonian

Similarly one can show that equations for y and Πy can be
obtained with the Hamiltonian K . The price for lowering the
number of degrees of freedom is that we now have a “time
dependent” Hamiltonian (K is a function of s).
Although time is eliminated from our equations, the time
dependence can be found, if necessary. In order to do this, we need
the function s(t). Since ds/dt = ∂H/∂Πs , the inverse function
t(s) satisfies the following equation

dt

ds
=
∂Πs

∂H
= −

∂K

∂h
. (6.21)

Integrating this equation, we can find t(s), invert it, and find s(t).

Note: even for H time-independent, K has explicit s-dependence.
Equations of motion for t and h will be trivial.
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Small amplitude approximation

The Hamiltonian K given by Eq. (6.16) can easily be found from
Eq. (6.13):

K = −

(
1 +

x

ρ

)[
1

c2
h2 − (Πx − eAx)

2 − (Πy − eAy )
2 −m2c2

]1/2
− eAs

(
1 +

x

ρ

)
. (6.22)

In many cases of interest, a single component As is sufficient to
describe the magnetic field, so we can set Ax = Ay = 0 in
Eq. (6.22). In this case, Πx and Πy are equal to the kinetic
momenta Πx = px = mγvx and Πy = py = mγvy (see Eqs. (6.11)
and (3.25)). We will use px and py instead of Πx and Πy in what
follows. We will consider these momenta as small quantities
(compared with the total momentum of the particle), because
particles usually move at a small angle to the nominal orbit.
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Small amplitude approximation

Expanding the Hamiltonian in px and py we get:

K ≈ −p

(
1 +

x

ρ

)(
1 −

p2x
2p2

−
p2y

2p2

)
− eAs

(
1 +

x

ρ

)
, (6.23)

where p =
√
h2/c2 −m2c2 is the kinetic momentum of the

particle (which together with the energy is a conserved quantity in
a constant magnetic field).
Instead of using dimensional momenta px and py it is convenient
to introduce dimensionless variables Px = px/p0 and Py = py/p0,
where p0 is the nominal momentum in the ring. Transformation
from x , px , y , py to x , Px , y , Py is not canonical, but a simple
consideration shows that it can be achieved by simply dividing the
Hamiltonian by p0.
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Small amplitude approximation

Denoting the new Hamiltonian H we have

H(x ,Px , y ,Py ) =
K

p0
(6.24)

= −
p

p0

(
1 +

x

ρ

)(
1 −

1

2
P2
x

(
p

p0

)2

−
1

2
P2
y

(
p

p0

)2
)

−
e

p0
As

(
1 +

x

ρ

)
We are interested here in the case when the energy and the total
momentum of the particle can only slightly deviate from the
nominal one, that is

p

p0
= 1 + η, (6.25)

with η� 1. With this in mind, we obtain
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Small amplitude approximation

H(x ,Px , y ,Py ) (6.26)

= −(1 + η)

(
1 +

x

ρ

)(
1 −

1

2
P2
x −

1

2
P2
y

)
−

e

p0
As

(
1 +

x

ρ

)
,

where we replaced (p/p0)
2 by unity in small quadratic terms proportional

to P2
x and P2

y .
Finally, we note that our momenta Px , Py are approximately equal to the
orbit slopes x ′ ≡ dx/ds and y ′ ≡ dy/ds, respectively. Indeed

x ′ ≡ dx

ds
=

vx
vs

=
px
ps
≈ Px , (6.27)

with a similar expression for y ′. Some authors actually use x ′ and y ′ as

canonical momenta conjugate to x and y instead of Px , Py—in this case

one has to be careful to avoid confusion between a canonical variable

(say Px) with the rate of change of its conjugate (that is dx/ds).
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Time dependent Hamiltonian

Our derivation above can be easily modified to include the case of
time dependent Hamiltonians. In Eq. (6.14) we will have
H(x , Πx , y , Πy , s, Πs , t), and correspondingly the new Hamiltonian
K will also be a function of time

K (x , Πx , y , Πy , t, h, s) = −Πs(x , Πx , y , Πy , t, h, s), (6.28)

where the time t is now understood as a third coordinate (in
addition to x and y) and the energy h is the third momentum.
The Hamiltonian equation (6.21) should be complemented by

dh

ds
=
∂K

∂t
. (6.29)

Note that Eqs (6.21) and (6.29) have “inverted” signs if t is
treated as a coordinate and h as it conjugate momentum. This,
however, can be easily fixed, if one accepts −h as the momentum
conjugate to t.
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Equations of motion in an accelerator
(Lecture 7)

June 12, 2013

130/441



Lecture outline

We consider several types of magnets used in accelerators and
write down the vector potential of the magnetic field for them. We
then analyze small betatron oscillations in the ring.
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Vector potential for different types of magnets

There are several types of magnets that are used in accelerators
and each of them is characterized by a specific dependence of As

versus x and y . We will use the fact that we are only interested in
fields near the reference orbit, |x |, |y |� |ρ|. We will be neglecting
higher order terms such as (x/ρ)2 and (y/ρ)2.
We first consider dipole magnets that are used to bend the orbit.
The dipole magnetic field is:

B = ŷB(s) . (7.1)

The function B(s) is such that it is not zero only inside the
magnet and vanishes outside of it. This field can be represented by
the following vector potential:

As = −B(s)x

(
1 −

x

2ρ

)
. (7.2)
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Vector potential for different types of magnets

Indeed, using Eq. (6.4)

By = −
1

1 + x/ρ

∂As(1 + x/ρ)

∂x

≈ B(s)

(
1 −

x

ρ

)
∂

∂x
x

(
1 −

x

2ρ

)(
1 +

x

ρ

)
≈ B(s)

(
1 −

x

ρ

)
∂

∂x

(
x +

x2

2ρ

)
≈ B(s) + O

(
x2

ρ2

)
. (7.3)

This is an approximation in which we only keep terms to the first
order in |x/ρ|.
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Vector potential for different types of magnets

The picture of windings of a dipole magnet.
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Vector potential for different types of magnets

The second type is a quadrupole magnet. It is used to focus
off-orbit particles close to the reference orbit. It has the following
magnetic field:

B = G (s)(ŷ x + x̂y) . (7.4)

The picture of a quadrupole magnet and the magnetic field lines.
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Vector potential for different types of magnets

As we will see below from the equations of motion, the quadrupole
magnetic field focuses particles around the equilibrium orbit. The
corresponding vector potential is

As =
G

2

(
y2 − x2

)
. (7.5)

A skew quadrupole is a normal quadrupole rotated by 45 degrees:

B = Gs(s)(−ŷ y + x̂x) , (7.6)

with

As = Gsxy . (7.7)
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Vector potential for different types of magnets

Finally, we will also consider a sextupole magnet. Sextupoles are
used to correct some properties of betatron oscillations of particles
around the reference orbit. This element has a nonlinear
dependence of the magnetic field with transverse coordinates:

B = S(s)

[
1

2
ŷ(x2 − y2) + x̂xy

]
, (7.8)

with

As = S

(
1

2
xy2 −

1

6
x3
)
. (7.9)
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Linearized Hamiltonian

Assume that we have only dipoles and quadrupoles in the ring:

H ≈ −(1 + η)

(
1 +

x

ρ

)(
1 −

1

2
P2
x −

1

2
P2
y

)
−

e

p0
As

(
1 +

x

ρ

)
= −(1 + η)

(
1 +

x

ρ

)(
1 −

1

2
P2
x −

1

2
P2
y

)
(7.10)

−
e

p0

[
−B(s)x

(
1 −

x

2ρ

)
+

G (s)

2

(
y2 − x2

)](
1 +

x

ρ

)
≈ −1 − η− η

x

ρ
+

1

2
P2
x +

1

2
P2
y +

x2

2ρ2
−

e

p0

G (s)

2

(
y2 − x2

)
,

where we use ρ = p/eB and neglected terms of the third and higher
orders. Assume η = 0. We can drop the constant first term (unity) on
the last line of Eq. (7.10), then the Hamiltonian is the sum of two terms
corresponding to vertical and horizontal degrees of freedom:

H = Hx +Hy , (7.11)

More generally, the motion can be coupled which is more complicated.
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Linearized Hamiltonian

with

Hx =
1

2
P2
x +

x2

2ρ2
+

e

p0

G (s)

2
x2 , (7.12)

and

Hy =
1

2
P2
y −

e

p0

G (s)

2
y2 . (7.13)

The Hamiltonian (7.11) is split into a sum of two
Hamiltonians—the horizontal and vertical motions are decoupled.
The quadrupoles focus or defocus the beam in the transverse
direction: focusing in x (G > 0) results in defocusing in y , and
vice versa. We will show that a sequence of quadrupoles with
alternating polarities confine the beam near the reference orbit. A
particle near the equilibrium orbit executes betatron oscillations.
So does the beam centroid, though dynamics may be different.

139/441



Linearized Hamiltonian

Notice also focusing in the horizontal direction inside dipole
magnets (so-called weak focusing ∝ 1/ρ2).
In what follows, to study general properties of the transverse
motion in both transverse planes, we will use a generic Hamiltonian

H0 =
1

2
P2
x +

K (s)

2
x2 , (7.14)

where K = ρ−2 + eG/2p0 for the horizontal, and K = −eG/2p0
for the vertical plane.
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Hill’s equation

From the Hamiltonian (7.14) we find the following equation of
motion in a transverse plane:

x ′′(s) + K (s)x(s) = 0 . (7.15)

In an accelerator ring K (s) is a periodic function of s with a period
that we denote by L (which may be equal to a fraction of the ring
circumference), and Eq. (7.15) is called Hill’s equation. It
describes the so called betatron oscillations of a particle in the
ring. Note that the same equation describes the parametric
resonance, with the only difference that we now have s as an
independent variable instead of t. We now know that this equation
can have both stable and unstable solutions. Of course, for storage
and acceleration of beams in an accelerator, one has to design it in
such a way that avoids unstable solutions of Eq. (7.15).
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Betatron function

To understand general properties of the betatron motion in a ring,
we seek a solution to Eq. (7.15) in the following form

x(s) = Aw(s) cosψ(s) , (7.16)

where A is an arbitrary constant, and ψ is called the betatron
phase. It turns out that if a particle’s motion is stable, w(s) is a
periodic function of s with the period L. Introducing two unknown
functions w(s) and ψ(s) instead of one function x(s) gives us
freedom to impose a constraint later in the derivation. We have

x ′

A
= w ′ cosψ− wψ ′ sinψ ,

x ′′

A
= w ′′ cosψ− 2w ′ψ ′ sinψ− wψ ′′ sinψ− wψ ′2 cosψ . (7.17)
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Betatron function

Eq. (7.15) now becomes

w ′′ cosψ− 2w ′ψ ′ sinψ− wψ ′′ sinψ− wψ ′2 cosψ+ K (s)w cosψ

= [w ′′ cos−wψ ′2 + K (s)w ] cosψ− [2w ′ψ ′ + wψ ′′] sinψ = 0 .
(7.18)

We now use the freedom mentioned above and set to zero both
the term in front of cosψ and the term in front of sinψ. This
gives us two equations:

w ′′ − wψ ′2 + K (s)w = 0

−2w ′ψ ′ − wψ ′′ = 0 . (7.19)
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Betatron function

The last equation can be written as

1

w
(ψ ′w2) ′ = 0 . (7.20)

If we introduce the β function as β(s) = w(s)2, then

ψ ′ =
1

β(s)
(7.21)

(we have chosen the constant of integration equal to 1). The first
equation in (7.19) now becomes

w ′′ −
1

w3
+ K (s)w = 0 , (7.22)

or, in terms of the β function,

1

2
ββ ′′ −

1

4
β ′2 + Kβ2 = 1 . (7.23)

This is a nonlinear differential equation of second order. As we pointed
out above, one has to find a periodic solution to this equation.
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Betatron function

There are several techniques and codes to find β(s) and other
orbit properties for a ring with given magnets. Transfer maps from
element to element are often used as a starting point: there is a
direct relation between a symplectic transfer map and how α and
β change (also phase advance or tune).
Here is the beta function for the High Energy Ring of PEP-II at
SLAC.

0 500 1000 1500 2000
s

20

40
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80

100
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145/441



Tune

The betatron phase advance of the ring can be found by
integrating Eq. (7.21),

∆ψ =

∫C
0

ds

β(s)
. (7.24)

The quantity ∆ψ/2π is called the tune ν (in European literature it
is usually denoted by Q)

ν =
1

2π

∫C
0

ds

β(s)
; (7.25)

it is a fundamental characteristic of the beam dynamics in the ring.
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Action-angle variables for circular machines
(Lecture 8)

June 12, 2013
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Action-angle variables and the Floquet transformation

We start with the Hamiltonian

H =
1

2
P2
x +

1

2
K (s)x2 .

Previously we found a solution to this equation which we now write
as

x(s) = A
√
β(s) cosψ(s) . (8.1)

Differentiating this equation with respect to s we find

x ′(s) = Px = A
β ′

2
√
β(s)

cosψ(s) −
√
β(s)ψ ′ sinψ(s)

=
A√
β

cosψ(s)

(
β ′

2
− tanψ(s)

)
=

x

β

(
β ′

2
− tanψ(s)

)
. (8.2)
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Action-angle variables and the Floquet transformation

Typically x and x ′ look like functions shown here.

We will now show that transforming to new variables, we can
obtain a much simpler description of the particle motion.
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Action-angle variables and the Floquet transformation

We will obtain the action-angle variables φ (coordinate) and J
(momentum) using a generating function of the first kind, (4.22),
F1(x , φ, s). Analogous to the canonical transformation for the
linear oscillator we will require that

x(s) = A(J)
√
β(s) cosφ

Px(s) =
x

β(s)

(
β ′

2
− tanφ

)
. (8.3)

We have

Px =
∂F1
∂x

J = −
∂F1
∂φ

The generating function is

F1(x , φ, s) =

∫
Pxdx =

x2

2β

(
β ′

2
− tanφ

)
, (8.4)

where for Px we used Eq. (8.3).
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Action-angle variables and the Floquet transformation

With this generating function we find the action

J = −
∂F1
∂φ

=
x2

2β
sec2φ . (8.5)

Using sec2φ = 1 + tan2φ , and the expression for tanφ from Eq.
(8.3),

− tanφ =
βPx

x
+ α (8.6)

where

α = −
β ′

2
, (8.7)

we obtain J in terms of x and x ′:

J =
1

2β

[
x2 + (βPx + αx)

2
]
. (8.8)
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Action-angle variables and the Floquet transformation

Equations (8.6) and (8.8) give us the transformation from the old
conjugate variables x and Px to the new ones φ and J. The
inverse transformation (φ, J) → (x ,Px) can also be found. From
the first of Eqs. (8.5) we have

x =
√

2βJ cosφ . (8.9)

Substituting this relation to the second of Eqs. (8.5) we obtain the
equation for Px in terms of J and ψ

Px = −

√
2J

β
(sinφ+ α cosφ) . (8.10)
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Action-angle variables and the Floquet transformation

To find the new Hamiltonian which we denote by Ĥ we need to
take into account that the generating function depends on the
time-like variable s:

Ĥ = H +
∂F1
∂s

=
1

2
P2
x +

1

2
K (s)x2 +

∂

∂s

x2

2β

(
β ′

2
− tanφ

)
=

1

2
P2
x +

1

2
K (s)x2 +

x2

4

β ′′β− β ′2

β2
+

x2β ′

2β2
tanφ . (8.11)
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Action-angle variables and the Floquet transformation

We now use
1

2
ββ ′′ −

1

4
β ′2 + Kβ2 = 1 .

to eliminate β ′′ from the equation and Eq. (8.6) to eliminate φ:

Ĥ =

=
1

2
P2
x +

1

2
K (s)x2 −

x2

4

1
2β
′2 + 2Kβ2 − 2

β2
−

x2β ′

2β2

(
βx ′

x
+ α

)
=

1

2
P2
x +

1

2β2
x2 +

α2

2β2
x2 +

α

β
Pxx

=
1

2β2
x2 +

1

2

(
Px +

α

β
x

)2

=
J

β
. (8.12)
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Action-angle variables and the Floquet transformation

Since the new Hamiltonian is independent of φ the equation for J
is

J ′ =
∂Ĥ
∂φ

= 0 , (8.13)

which means that J is an integral of motion. The quantity 2J is
called the Courant-Snyder invariant. The Hamiltonian equation for
φ gives

φ ′ =
∂Ĥ
∂J

=
1

β(s)
. (8.14)

Comparing this equation with Eq. (7.21) we see that the new
variable φ is actually the old betatron phase, φ = ψ+ φ0.
Particles in the beam will have various initial phases φ0.
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Action-angle variables and the Floquet transformation

We “straightened out” the behavior of the new momentum
variable.

s

J

s

φ

Figure : Plots of J and φ versus s.
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Action-angle variables and the Floquet transformation

We can go further and “straighten out” the φ variable as well. This is
achieved with one more canonical transformation, from φ and J to φ1

and J1. The generating function is of the second type, F2(φ, J1, s)

F2(φ, J1, s) = J1

(
2πνs

C
−

∫ s
0

ds ′

β(s ′)

)
+ φJ1 , (8.15)

where C is the circumference of the ring, and the tune is given by Eq.
(7.25). This function gives for the new angle

φ1 =
∂F2

∂J1
= φ+

2πνs

C
−

∫ s
0

ds ′

β(s ′)

= φ+
2πνs

C
−ψ(s) , (8.16)

and the action is not changed

J =
∂F2

∂φ
= J1 . (8.17)
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Action-angle variables and the Floquet transformation

The new Hamiltonian is

Ĥ1 = Ĥ +
∂F2
∂s

=
2πν

C
J1 = const . (8.18)

Now the evolution of the new coordinate φ1 is governed by the
equation

φ ′1 =
∂Ĥ1

∂J1
=

2πν

C
, (8.19)

which means that φ1 is a linear function of s.
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Action-angle variables and the Floquet transformation

Further comments:
This transformation can be useful when analyzing nonlinear
dynamics in a ring. Note that φ1′ 6= 1/β any more.
We could have chosen instead to change s to phase advance,
through an extended canonical transformation.
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Phase space motion at a given location

Let us assume that we plot the phase space x , Px at some location
s at the ring and follow particle’s motion as it passes through this
location. It is convenient to normalize the coordinate x by the beta
function at this location β(s). A set of consecutive points
xn/β,Px ,n, n = 1, 2 . . ., in the phase space will form particle’s
trajectory. Because we have an integral of motion J, all these
points are located on the curve J = const. From the expression
(8.8) for J it follows that this curve is an ellipse whose size and
orientation depends on the values J, β, and α.
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Ellipses at different positions in the ring

It is easy to see that the ellipse becomes a circle if α = 0. In this
case, the trajectory is very simple: each consecutive point of the
circle is rotated by the betatron phase advance ∆ψ in the
clockwise direction.
Set of ellipses at another location in the ring will have a different
shapes which are defined by the local values of β and α.

Imagine how these ellipses are rotating and changing their shape
when one travels along the ring circumference.
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Dipole field errors and the closed orbit distortion
(Lecture 9)

June 13, 2013
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Lecture outline

The magnetic field in any real machine is different from the ideal
design one. It is important to understand what is the effect of
small magnetic errors on particles’ motion in an accelerator. In this
lecture we consider the effect of the dipole field errors.
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Closed orbit distortion

We consider what happens if a dipole magnetic field is not exactly
equal to the design one. We will see that such errors lead to
changes in the reference orbit in an accelerator.
Let us assume the guiding vertical magnetic field in a circular
accelerator deviates from the design value by ∆B(s). The
corresponding vector potential, in which we keep only the first
order term [see Eq. (7.2)] is As = −∆B(s)x . This vector potential
should be added to the Hamiltonian (7.10); it modifies the motion
in the horizontal plane only. We can write Hx as

H =
1

2
P2
x +

1

2
K (s)x2 +

e∆B(s)

p0
x (9.1)

(we drop the subscript x in what follows).
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Closed orbit distortion

The most direct way to deal with this problem is to write the
equation for x

x ′′ + K (s)x = −
e∆B(s)

p0
. (9.2)

A periodic solution, x0(s), to this equation gives a closed orbit
distortion. It satisfies Eq. (9.2),

x ′′0 + K (s)x0 = −
e∆B(s)

p0
, (9.3)

with the periodicity condition x0(s + C ) = x0(s) where C is the
circumference of the ring. A general solution to Eq. (9.2) is

x(s) = x0(s) + ξ(s) , (9.4)

where ξ(s) satisfies

ξ ′′ + K (s)ξ = 0 . (9.5)
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Closed orbit distortion

The function ξ(s) describes betatron oscillations around the
perturbed orbit.

Figure : An ideal and distorted orbits, and a betatron oscillation.
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Closed orbit distortion

Let us calculate the orbit distortion x0(s). We first consider the
case of a field perturbation localized at one point:
∆B(s) = ∆B0(s

′)δ(s − s ′). Since the right hand side of Eq. (9.3)
is equal to zero everywhere except for the point s = s ′, we seek
solution in the form of Eq. (8.1) where we introduce an initial
phase ψ0

x0(s) = A
√
β(s) cos(ψ(s) −ψ0) . (9.6)

Our first requirement is that x0(s) should be continuous at s = s ′.
This is achieved if we choose ψ0 = ψ(s

′) + πν and assume that
ψ(s) varies from ψ(s ′) to ψ(s ′) + 2πν when we go around the
orbit. Indeed, when ψ(s) = ψ(s ′), the argument of the cos
function is equal to −πν, and x0(s

′) = A
√
β(s ′) cos(−πν). After

a turn around the ring, the argument of the cos function becomes
equal to πν, and since cos is an even function, x0(s

′+C ) = x0(s
′).
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Closed orbit distortion

The second requirement is obtained by integrating through the δ-function
in Eq. (9.3)—it gives us the jump of the derivative of x0 at s ′

x ′0(s
′) − x ′0(s

′ + C ) = −
e∆B(s ′)

p0
. (9.7)

From this equation we find

A =

√
β(s ′)

2 sin(πν)

e∆B(s ′)

p0
. (9.8)

For an arbitrary function B(s) we need to add contributions from all
locations, which means integration over the circumference of the ring:

x0(s) =
e

2p0 sin(πν)

∫ s+C

s

ds ′∆B(s ′)
√
β(s)β(s ′) cos(ψ(s) −ψ(s ′) − πν) .

(9.9)
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Closed orbit distortion

From Eq. (9.9), we see that integer values for the tune ν are not
acceptable because they would result in unstable closed orbit.
The action becomes

J(x ,Px , s) =
1

2β

[
(x − x0)

2 +
(
β[Px − x ′0] + α[x − x0]

)2]
, (9.10)

and the Hamiltonian again takes the form J/β. This is one of the
homework problems, using the generating function

F1(x , φ, s) =
[x − x0(s)]

2

2β

(
β ′

2
− tanφ

)
+ xx ′0(s). (9.11)

A crude estimate for x0 is

x0 ∼
∆B

B
Cβρ ∼ β

∆B

B
. (9.12)

Stronger focusing reduces the impact of field errors.
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Effect of energy deviation

If particle’s energy is not exactly equal to the nominal one, its
equilibrium orbit in the horizontal plane changes. It is easy to find
the new orbit corresponding to the energy deviation η. From the
Hamiltonian (7.10) we see that the extra term due to non
vanishing η that involves the coordinate x is −ηx/ρ. Hence
instead of (9.1) one gets

H =
1

2
P2
x +

1

2
K (s)x2 −

η

ρ
x , (9.13)

which is formally obtained from (9.1) by replacement

∆B → −
ηp0
eρ

x . (9.14)
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Effect of energy deviation

Using (9.9) we immediately find that the new orbit is given by

x0(s) = D(s)η, (9.15)

with the function D

D(s) =

√
β(s)

2 sin(πν)

∫ s+C

s
ds ′
√
β(s ′)

ρ(s ′)
cos(ψ(s) −ψ(s ′) − πν) .

(9.16)

This function is called the dispersion function of the ring.
Using the expression (9.10) and (9.15) one immediately concludes
that the action variable for a particle with energy deviation η is

J(x ,Px , η, s) =
1

2β

[
(x − ηD(s))2 +

(
β[Px − ηD

′(s)] + α[x − ηD(s)]
)2]

.

(9.17)
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Quadrupole errors

Let us now assume that we have a quadrupole error

H =
1

2
x ′2 +

1

2
K (s)x2 +

1

2
ε∆K (s)x2 , (9.18)

where we introduced a formal smallness parameter ε. What kind
of effects does this error have on the motion? Since we know that
the focusing function K (s) determines the betatron oscillations in
the system, changing the focusing would result in a perturbation of
the beta function and hence the tune of the ring.
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Quadrupole errors

Skipping the derivation, I will show the final result.

β1 = β−
β

2 sin 2πν

∫ s+C

s
ds ′∆K (s ′)β(s ′) cos 2(−ψ(s) +ψ(s ′) − πν) .

The last term is often called the beta beating term.
An important conclusion that follows from the above equation is
that one should avoid half-integer values of the tune—they are
unstable with respect to errors in the focusing strength of the
lattice.
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Third-order resonance

Effect of sextupoles on betatron oscillations. The sextupole vector
potential is given by Eq. (7.9) [see Lecture 7]:

As = S

(
1

2
xy2 −

1

6
x3
)
. (9.19)

Our goal is to study 1D effects so we neglect the first term in this
equation (assuming y = 0) and use As = −S(s)x3/6. We need to
add the term −eAs/p to the Hamiltonian (7.11)

H =
1

2
x ′2 +

1

2
K (s)x2 +

1

6
S(s)x3 , (9.20)

where S = eS/p.
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Third-order resonance

We consider a ring with one short sextupole magnet with length
much shorter then the ring circumference C . In this case S(s) can
be approximated by a delta function, θ = 2πs/C

S(s) = T0δ(s − s0), R =
1

2
√

2
T0β3/2

0
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Figure : Phase orbits for the case [ν] − 1/3 = 0.1. Particle starting from
outside of the traingular-shaped area quickly leave the system.
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Third-order resonance

An example of experimentally
measured third-order resonance
orbits at the IUCF cooler ring.

In collider rings, by contrast, beam-beam interactions tend to be a
bigger concern than field errors or nonlinearities.
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Resonance overlapping and dynamic aperture
(Lecture 10)

June 13, 2013
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Lecture outline

Linear Hamiltonian in accelerators is integrable, and the motion is
regular. What is the effect of nonlinear terms in the Hamiltonian?
They lead to many nonlinear resonances in the motion and may
result in stochastic motion of the particles. We will consider a
simple model, a so called standard map, which illustrates
qualitative features of what can occur in a system with many
resonances.
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Standard map and resonance overlapping

We start from the following Hamiltonian

H(I , θ, t) =
1

2
I 2 + K δ̃(t) cos θ , (10.1)

where K is a parameter, δ̃(t) =
∑∞

n=−∞ δ(t + n) is the periodic δ
function that describes unit kicks repeating with the unit period. Here I
is the action variable, and θ as the angle. Compare with (9.20). Both I
and θ are dimensionless. The equations of motion are

İ = −
∂H

∂θ
= K δ̃(t) sin θ , θ̇ =

∂H

∂I
= I . (10.2)

[need a plot] If In and θn are the values at t = n − 0 (before the
delta-function kick), then integrating the first of Eqs. (10.2) from
t = n − 0 to t = n + 0 (through the delta-function kick) gives
In+1 = In + K sin θn, which is conserved over the interval from t = n + 0
to t = (n + 1) − 0 (where there are no kicks). Integrating the second
equation in (10.2) from t = n + 0 to t = (n + 1) − 0 and remembering
that the action here is already equal to In+1 gives θn+1 = θn + In+1.
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Standard map and resonance overlapping

Hence we arrive at the following transformation action-angle
variables which links their values at time t = n to the values at
time t = n + 1:

In+1 = In + K sin θn

θn+1 = θn + In+1 . (10.3)

This transformation is called the standard map or Chirikov map1.

1One can also find in the literature a definition of the standard map which
differs from Eqs. (10.3) by numerical factors.
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Standard map and resonance overlapping

The periodic delta-function in (10.1) can be expanded into the
Fourier series

δ̃(t) = 1 + 2
∞∑
n=1

cos (2πnt) . (10.4)

Substituting this representation into the Hamiltonian Eq. (10.1) we
can rewrite the latter in the following form

H =
1

2
I 2 + K

∞∑
n=−∞ cos(θ− 2πnt) , (10.5)

(we used 2 cos(θ) cos(2πnt) = cos(θ− 2πnt) + cos(θ+ 2πnt))).
From this Hamiltonian we see that the system is a pendulum (the
term n = 0 in the sum) driven by periodic perturbations with
frequencies equal to 2πn (terms with n 6= 0).
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Standard map and resonance overlapping

Selecting only one term in this sum would give us

H =
1

2
I 2 + K cos(θ− 2πnt) . (10.6)

We can make a canonical transformation I , θ→ J, φ with

J = I − 2πn , φ = θ− 2πnt . (10.7)

The new Hamiltonian for these variables is

H ′ = 1

2
J2 + K cosφ+ const . (10.8)

One can see that Eq. (10.8) is the pendulum Hamiltonian with the
phase space shown on the next slide. The width of the separatrix is
equal J = ±2

√
K . In variable I , this phase space is shifted by 2πn

units upward.
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Standard map and resonance overlapping

Trying to understand what is the overall structure of the phase
space of the original Hamiltonian, we can naively superimpose
phase portraits for Hamiltonians (10.8) with various values of n.
The width of each resonance is equal to 4

√
K .

Of course, superimposing phase
spaces is not a legitimate way of
analysis (which is especially clear
in the case when the separatrices
of neighboring resonances overlap,
see below).
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Standard map and resonance overlapping

As long as the distance between the islands is much larger than the
width of the separatrix, to a good approximation, resonances with
different values of n can be considered separately. When the value
of K increases the resonances begin to overlap and the dynamics
becomes complicated.

Formally, overlapping occurs for K > π2/4. Simulations show,
when K increases, there is a gradual transition from a regular
motion to a fully stochastic regime. Qualitatively, the transition
occurs at

K ∼ 1 . (10.9)

This is often called the Chirikov criterion of overlapping resonances.
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Standard map and resonance overlapping

Figure : Computer simulations for the standard map for four different
values of the parameter K , K = 0.1, 0.25, 1, 3 from left to right and from
top to bottom.
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Standard map and resonance overlapping

What happens in the regime of developed stochasticity, when
K � 1?
After each kick the particle loses its memory about the previous
phase, and the consecutive kicks can be considered as
uncorrelated. The motion along the action axis I becomes random.
We have from Eq. (10.3) the change of the action ∆In = K sin θn.
In the limit of large K the phase values become random and
uncorrelated with each other. Taking square of ∆In and averaging
over the random phase θn gives

〈∆I 2〉 = 1

2
K 2 . (10.10)

If we plot the dependence I 2 versus the number of iterations N, we
expect from Eq. (10.10)

I 2 ≈ 1

2
K 2N . (10.11)
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Standard map and resonance overlapping

A more detailed theory shows that Eq. (10.11) gives only the
leading term for the diffusion process—there are notable
corrections in this equation if K is not very large. In Figure below
we confirm Eq. (10.11) by direct numerical simulation for
K = 8.41 [Higher order corrections vanish for the value K = 8.41].
The straight line is the theoretical expectation given by
Eq. (10.11).

0 100 200 300 400
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0

5000

10000

I2
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Dynamic aperture in accelerators

A modern circular accelerators nonlinear components of the
magnetic field of those magnets, as well as errors in manufacturing
and installation of the magnets lead to many resonances in the
machine. In a typical situation, the nonlinear fields make the phase
space at some distance from the reference orbit more prone to
stochastic motion, and result in the situation when only particles in
a region near the reference orbit are properly confined. This region
is called the dynamic aperture of the machine. It is computed with
the help of accelerator codes by launching particles at various
locations away from the reference orbit and tracking their motion.
An example of calculation of the dynamic aperture for the light
source SPEAR3 at SLAC is shown in Figure below.
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Dynamic aperture in accelerators

Figure : Dynamic aperture for the SPEAR3 light source at SLAC.
Different curves correspond to 6 seeds of machine errors. The solid lines
are for the nominal energy beam and the dashed ones are for the 3%
energy deviation.
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The kinetic equation
(Lecture 11)

June 14, 2013

190/441



Lecture outline

In the preceding lectures we focused our attention on a single
particle motion. In this lecture, we will introduce formalism for
treating an ensemble of particles circulating in an accelerator ring.

191/441



Distribution function in phase space and kinetic equation

We start from considering a simple case of one degree of freedom
with the canonically conjugate variables q and p.

q

p

A large ensemble of particles (think about a particle beam) with
each particle having various values of q and p constitutes a
“cloud” in the phase space.
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Distribution function in phase space and kinetic equation

Let us consider an infinitesimally small region in phase space
dq × dp and let the number of particles of the beam at time t in
this. Mathematically infinitesimal phase element should be
physically large enough to include many particles, dN � 1. We
define the distribution function of the beam f (q, p, t) such that

dN(t) = f (q, p, t)dp dq . (11.1)

We can say that the distribution function gives the density of
particles in the phase space.
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Distribution function in phase space and kinetic equation

Particles travel from one place in the phase space to another, and
the distribution function evolves with time. Our goal is to derive a
kinetic equation that governs this evolution. In this derivation, we
will assume that particles’ motion is Hamiltonian.
Consider an infinitesimally small region of the phase space.

q

p

q+dq

p+dp

q

p
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Distribution function in phase space and kinetic equation

The number of particles in this region at time t is given by
Eq. (11.1). At time t + dt this number will change because of the
flow of particles through the boundaries. Due to the flow in the
q-direction the number of particles that flow in through the left
boundary is

f (q, p, t)× dp q̇(q, p, t)× dt (11.2)

and the number of particles that flow out through the right
boundary is

f (q + dq, p, t)× dp q̇(q + dq, p, t)× dt . (11.3)
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Distribution function in phase space and kinetic equation

Similarly, the number of particles which flow in through the lower
horizontal boundary is

f (q, p, t)× dq ṗ(q, p, t)× dt (11.4)

and the number of particles that flow out through the upper
horizontal boundary is

f (q, p + dp, t)× dq ṗ(q, p + dp, t)× dt . (11.5)

The number of particles in the volume dq × dp is now changed

dN(t + dt) − dN(t)

= [f (q, p, t + dt) − f (q, p, t)]dp dq

= f (q, p, t)dp q̇(q, p, t)dt − f (q + dq, p, t)dp q̇(q + dq, p, t)dt

+ f (q, p, t)dq ṗ(q, p, t)dt − f (q, p + dp, t)dq ṗ(q, p + dp, t)dt .
(11.6)
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Distribution function in phase space and kinetic equation

Dividing this equation by dp dq dt and expanding in Taylor’s series
(keeping only linear terms in dp, dq, dt) gives the following
equation

∂f

∂t
+
∂

∂q
[q̇(q, p, t)f ] +

∂

∂p
[ṗ(q, p, t)f ] = 0 . (11.7)

What we derived is the continuity equation for the function f .
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Incompressible Hamiltonian flow

Due to the Hamiltonian nature of the flow in the phase space a
medium represented by a distribution function f in incompressible.
This follows from the Liouville theorem. Indeed, according to this
theorem the volume of a space phase element does not change in
Hamiltonian motion. Since the value of f is the number of
particles in this volume, and this number is conserved, f within a
moving elementary volume is also conserved. The density at a
given point of the phase space q, p however changes because other
liquid elements arrive at this point at a later time.
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Distribution function in phase space and kinetic equation

Mathematically, the fact of incompressibility is reflected in the
following transformation of the continuity equation (11.7). Let us
take into account the Hamiltonian equations for q̇ and ṗ:

∂

∂q
q̇(q, p, t) =

∂

∂q

∂H

∂p
=
∂

∂p

∂H

∂q
= −

∂

∂p
ṗ(q, p, t) , (11.8)

which allows to rewrite Eq. (11.7) as follows

−
∂f

∂t
+
∂H

∂q

∂f

∂p
−
∂H

∂p

∂f

∂q
= 0 . (11.9)
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Distribution function in phase space and kinetic equation

In accelerator physics this equation is often called the Vlasov
equation. It is a partial differential equation which is not easy to
solve in most of the cases. It is however extremely useful for
studying many effects in accelerators that involve interaction
between the particles of the beam.
Note, that using the formalism of Poisson brackets, we can also
write the Vlasov equation as

∂f

∂t
+ {H, f } = 0 . (11.10)

See (3.31). This means that

df

dt
= 0
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Distribution function in phase space and kinetic equation

In case of n degrees of freedom, with the canonical variables qi and
pi , n = 1, 2, . . . , n, the distribution function f is defined as a
density in 2n-dimensional phase space and depends on all these
variables, f (q1, . . . , p1, . . . , t). The Vlasov equation takes the form

−
∂f

∂t
+

n∑
i=1

(
∂H

∂qi

∂f

∂pi
−
∂H

∂pi

∂f

∂qi

)
= 0 . (11.11)

Sometimes it is more convenient to normalize f by N, then the
integral of f over the phase space is equal to one.
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Integration of the kinetic equation along trajectories

We have stated above that the distribution function is constant
within a moving infinitesimal element of phase space “liquid”. We
will now prove it.
Consider a trajectory in the phase space, and calculate the
difference of f at two close points on this trajectory.

q

p

q,p,t,

q+dq,p+dp,t+dt

t
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Integration of the kinetic equation along trajectories

We have

df = f (q + dq, p + dp, t + dt) − f (q, p, t)

=
∂f

∂t
dt +

∂f

∂q
dq +

∂f

∂p
dp . (11.12)

Remember that the two points are on the same trajectory, hence,
dq = q̇dt = ∂H/∂p dt and dp = ṗdt = −∂H/∂q dt. We find

df =
∂f

∂t
dt −

∂H

∂q

∂f

∂p
dt +

∂H

∂p

∂f

∂q
dt = 0 . (11.13)

On the last step we invoked Eq. (11.9). We proved that the
function f is constant along the trajectories.
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Integration of the kinetic equation along trajectories

The above statement opens up a way to find solutions of the
Vlasov equation if the phase space orbits are known. Let
q(q0, p0, t) and p(q0, p0, t) be solutions of the Hamiltonian
equations of motion with initial values q0 and p0 at t = 0, and
F (q0, p0) be the initial distribution function at t = 0. Then the
solution of the Vlasov equation is given by the following equations

f (q, p, t) = F (q0(q, p, t), p0(q, p, t)) , (11.14)

where the functions q0(q, p, t) and p0(q, p, t) are obtained as
inverse functions from equations

q = q(q0, p0, t) , p = p(q0, p0, t) . (11.15)
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Steady state solutions of the kinetic equation

One of the powerful methods of solving the Vlasov equation is
based on a judicious choice of canonical variables.
Let us use canonical variables J and φ. Then our kinetic equation
is

∂f

∂s
+
∂Ĥ
∂J

∂f

∂φ
−
∂Ĥ
∂φ

∂f

∂J
=

∂f

∂s
+
∂Ĥ
∂J

∂f

∂φ
= 0 . (11.16)

We see from this equation that any function f that depends only
on J satisfies the equation ∂f /∂s = 0, and hence is a steady state
solution.
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Steady state solutions of the kinetic equation

The particular dependence f (J) is determined by various other
processes in the ring. In many cases, a negative exponential
dependence f versus J is a good approximation

f = const e−J/ε0 = const exp

(
−

1

2βε0

[
x2 + (βx ′ + αx)2

])
.

(11.17)

The quantity ε0 is called the beam emittance. It is an important
characteristic of the beam quality.
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Phase mixing and decoherence

Consider an ensemble of linear oscillators with the frequency ω,
whose motion is described by the Hamiltonian

H(x , p) =
p2

2
+ω2 x

2

2
. (11.18)

The distribution function f (x , p, t) for these oscillators satisfy the
Vlasov equation

∂f

∂t
−ω2x

∂f

∂p
+ p

∂f

∂x
= 0 . (11.19)

We can easily solve this equation. The trajectory of an oscillator
with the initial coordinate x0 and momentum p0 is

x = x0 cosωt +
p0
ω

sinωt

p = −ωx0 sinωt + p0 cosωt . (11.20)

207/441



Phase mixing and decoherence

Inverting these equations, we find

x0 = x cosωt −
p

ω
sinωt

p0 = ωx sinωt + p cosωt . (11.21)

If F (x , p) is the initial distribution function at t = 0, then,
according to Eq. (11.14) we have

f (x , p, t) = F
(
x cosωt −

p

ω
sinωt,ωx sinωt + p cosωt

)
.

(11.22)

This solution describes rotation of the initial distribution function
in the phase space. An initially offset distribution function results
in collective oscillations of the ensemble with the betatron period.
A mismatched distribution oscillates at half the betatron period.
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Phase mixing and decoherence

A more interesting situation occurs if there is a frequency spread in
the ensemble. Let us assume that each oscillator is characterized
by some parameter δ (that does not change with time), and ω is a
function of δ, ω(δ).

H(x , p, δ) =
p2

2
+ω(δ)2

x2

2
. (11.23)

We then have to add δ to the list of the arguments of f and F ,
and Eq. (11.22) becomes

f (x , p, t, δ) = F

(
x cosω(δ)t −

p

ω(δ)
sinω(δ)t,

ω(δ)x sinω(δ)t + p cosω(δ)t, δ

)
. (11.24)
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Phase mixing and decoherence

To find the distribution of oscillators over x and p only one has to
integrate f over δ

f̂ (x , p, t) =

∫∞
−∞ dδ f (x , p, t, δ) . (11.25)

The behavior of the integrated function f̂ is different from the case
of constant ω at large times, even if the spread in frequencies ∆ω
is small. For t & 1/∆ω the oscillators smear out over the phase.
This effect is called the phase mixing and it results in decoherence
of collective oscillations of the ensemble of oscillators.
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Phase mixing and decoherence

In the limit t → ∞ an initial distribution approaches a steady state
which does not depend on time. We can find it using the
action-angle variables.

H(J, δ) = ω(δ)J (11.26)

with

J =
1

2ω

(
p2 +ω(δ)2x2

)
. (11.27)

The Vlasov equation in J − φ coordinates is

∂f

∂t
+
∂H

∂J

∂f

∂φ
=
∂f

∂t
+ω(δ)

∂f

∂φ
= 0 . (11.28)

In steady state ∂f /∂t = 0, hence f only depends on J. This
distribution should be feq(J) = (1/2π)

∫
dφ f̂ (φ, J, t = 0), which

is an orbit integral.
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Primer in Special Relativity
and Electromagnetic Equations

(Lecture 13)

June 14, 2013
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Lecture outline

We will review the relativistic transformation for time-space
coordinates, frequency, and electromagnetic field.
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Maxwell’s equations

Classical electrodynamics in vacuum is governed by the Maxwell
equations. In the SI system of units, the equations are

∇ · D = ρ

∇ · B = 0

∇× E = −
∂B

∂t

∇× H = j +
∂D

∂t
(13.1)

where ρ is the charge density, j is the current density, with
D = ε0E , H = B/µ0. B is called the magnetic induction, and H is
called the magnetic field.
The equations are linear: the sum of two solutions, E 1, B1 and E 2,
B2, is also a solution corresponding to the sum of densities
ρ1 + ρ2, j1 + j2.
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Point charge

For a point charge moving along a trajectory r = r0(t),

ρ(r , t) = qδ(r − r0(t)) , j(r , t) = qv(t)δ(r − r0(t)) , (13.2)

with v(t) = dr0(t)/dt.

Proper boundary conditions should be specified in each particular
case. On a surface of a good conducting metal the boundary
condition requires that the tangential component of the electric
field is equal to zero, E t |S = 0.
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SI units

We will use the SI system of units (sometimes energy in eV).
To convert an equation written in SI variables to the corresponding
equation in Gaussian variables, replace according to the following
table (from Jackson’s book):

Quantity SI Gaussian

Velocity of light (µ0ε0)
−1/2 c

Electric field, potential E , φ E√
4πε0

, φ√
4πε0

Charge density, current q, ρ, j q
√

4πε0, ρ
√

4πε0, j
√

4πε0

Magnetic induction B B
√

µ0
4π

We introduce the vacuum impedance Z0,

Z0 =

√
µ0

ε0
≈ 377 Ohm . (13.3)

In CGS units Z0 = 4π/c .
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Wave equations

In free space with no charges and currents field components satisfy
the wave equation

1

c2
∂2f

∂t2
−
∂2f

∂x2
−
∂2f

∂y2
−
∂2f

∂z2
= 0 . (13.4)

A particular solution of this equation is a sinusoidal wave
characterized by frequency ω and wave number k and propagating
in the direction of unit vector n:

f = A sin(ωt − kn · r) , (13.5)

where A is a constant and ω = ck .
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Vector and scalar potentials

It is often convenient to express the fields in terms of the vector
potential A and the scalar potential φ:

E = −∇φ−
∂A

∂t
B = ∇× A (13.6)

Substituting these equations into Maxwell’s equations, we find that
the second and the third equations are satisfied identically. We
only need to take care of the first and the fourth equations.
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Energy balance and the Poynting theorem

The electromagnetic field has an energy and momentum associated
with it. The energy density of the field (energy per unit volume) is

u =
1

2
(E · D + H · B) = ε0

2
(E 2 + c2B2) . (13.7)

The Poynting vector

S = E × H (13.8)

gives the energy flow (energy per unit area per unit time) in the
electromagnetic field.
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Energy balance and the Poynting theorem

n

V

A

Consider charges that move inside a
volume V enclosed by a surface A.
The Poynting theorem states

∂

∂t

∫
V

udV = −

∫
V

j · EdV −

∫
A

n · SdA ,

(13.9)

where n is the unit vector normal to
the surface and directed outward.

The LHS of this equation is the rate of change of the electromagnetic
energy. The first term on the right hand side is the work done by the
electric field. The second term describes the electromagnetic energy flow
from the volume through the enclosing surface.
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Photons

The quantum view on the radiation is that the electromagnetic
field is represented by photons. Each photon carries the energy h̄ω
and the momentum h̄k, where the vector k is the wave number
which points to the direction of propagation of the radiation,
h̄ = 1.05 · 10−34 J· sec is the Planck constant divided by 2π, and
k = ω/c .

221/441



Lorentz transformation and matrices

Consider two coordinate systems, K
and K ′. The system K ′ is moving
with velocity v in the z direction rel-
ative to the system K . The coordi-
nates of an event in both systems are
related by the Lorentz transformation

x = x ′ , y = y ′ ,

z = γ(z ′ + βct ′) ,

t = γ(t ′ + βz ′/c) , (13.10)

where β = v/c , and γ = 1/
√

1 − β2.
The vector (ct, r) = (ct, x , y , z) is called a 4-vector, and the above
transformation is valid for any 4-vector quantity.
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Lorentz transformation and matrices

We will often deal with ultrarelativistic particles, which means that
γ� 1. In this limit, a useful approximation is

β =

√
1 −

1

γ2
≈ 1 −

1

2γ2
. (13.11)

The Lorentz transformation (13.10) can also be written in the
matrix notation

x
y
z
t

 =


1 0 0 0
0 1 0 0
0 0 γ cβγ

0 0 βγ
c γ




x ′

y ′

z ′

t ′

 = L


x ′

y ′

z ′

t ′

 . (13.12)
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Lorentz transformation and matrices

The advantage of using matrices is
that they can be consecutively ap-
plied in several steps. Here is an ex-
ample: we want to generate a matrix
which corresponds to a moving coor-
dinate system along the x axis.

224/441



Lorentz transformation and matrices

Let us rotate K ′ system by 90 degrees around the y axis, in such a way
that the new x axis is equal to the old z . The rotated frame is denoted
by K ′′ and the

x‘

x‘’ x‘’’

x

y‘ y‘’ y‘’‘ y

z‘

z‘‘ z‘‘’

z

M L M
-1

rotrot

V V

coordinate transformation from K ′ to K ′′ is given by x ′′ = −z ′,
z ′′ = x ′, or in matrix notation

Mrot =


0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

 . (13.13)
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Lorentz transformation and matrices

A new frame K ′′′ is moving along along the z ′′ axis and we then
use the Lorentz transformation L to transform from K ′′ to K ′′′.
Finally, we transform from K ′′′ to the lab frame K using the
matrix M−1

rot. The sequence of these transformations is given by the
product

(Mrot)
−1 · L ·Mrot =


γ 0 0 γβc
0 1 0 0
0 0 1 0

γβ/c 0 0 γ

 . (13.14)

This result, of course, can be easily obtained directly from the
original transformation by exchanging x � z .
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Lorentz contraction and time dilation

Two events occurring in the moving frame at the same point and
separated by the time interval ∆t ′ will be measured by the lab
observes as separated by ∆t,

∆t = γ∆t ′ . (13.15)

This is the effect of relativistic time dilation.
An object of length l ′ aligned in the moving frame with the z ′ axis
will have the length l in the lab frame:

l =
l ′

γ
. (13.16)

This is the effect of relativistic contraction. The length in the
direction transverse to the motion is not changed.
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Doppler effect

Consider a wave propagating in a moving frame K ′. It has the
time-space dependence:

∝ cos(ω ′t ′ − k ′r ′) , (13.17)

where ω ′ is the frequency and k ′ is the wavenumber of the wave
in the moving frame. What kind of time-space dependence an
observer in the frame K would see? We need to make a Lorentz
transformation of coordinates and time to get

cos(ω ′t ′ − k ′r ′)

= cos(ω ′γ(t − βz/c) − kx
′x − ky

′y − kz
′γ(z − βct))

= cos(γ(ω ′ + kz
′βc)t − kx

′x − ky
′y − γ(kz

′ +ω ′β/c)z) .
(13.18)
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Doppler effect

We see that in the K frame this process is also a wave

∝ cos(ωt − kr) , (13.19)

with the frequency and wavenumber

kx = kx
′ ,

ky = ky
′ ,

kz = γ(kz
′ + βω ′/c) ,

ω = γ(ω ′ + βckz
′) . (13.20)

The object (ω, ck) is a 4-vector.

The result ω = γ(ω ′ + kz
′βc) matches E = γ(E ′ + pz

′βc), and
similarly for kz and pz .
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Doppler effect

The above transformation is valid for any type of waves
(electromagnetic, acoustic, plasma waves, etc.) Now let us apply it
to electromagnetic waves in vacuum. For those waves we know
that

ω = ck . (13.21)

Assume that an electromagnetic wave propagates at angle θ ′ in
the frame K ′

cos θ ′ =
k ′z
k ′
, (13.22)

and has a frequency ω ′ in that frame. What is the angle θ and the
frequency ω of this wave in the lab frame?
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Doppler effect

We can always choose the coordinate system such that
k = (0, ky , kz), then

tan θ =
ky
kz

=
k ′y

γ(kz
′ + βω ′/c)

=
sin θ ′

γ(cos θ ′ + β)
. (13.23)

In the limit γ� 1 almost all angles θ ′ (except for those very close
to π) are transformed to angles θ ∼ 1/γ. This explains why
radiation of an ultrarelativistic beams goes mostly in the forward
direction, within an angle of the order of 1/γ.
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Doppler effect

For the frequency, a convenient formula relates ω with ω ′ and θ
(not θ ′). To derive it, we use first the inverse Lorentz
transformation

ω ′ = γ(ω− βckz) = γ(ω− βck cos θ) , (13.24)

which gives

ω =
ω ′

γ(1 − β cos θ)
. (13.25)

Using β ≈ 1 − 1/2γ2 and cos θ = 1 − θ2/2, we obtain

ω =
2γω ′

1 + γ2θ2
. (13.26)

The radiation in the forward direction (θ = 0) gets a factor 2γ in
the frequency.
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Lorentz transformation of fields

The electromagnetic field is transformed from K ′ to K according
to following equations

Ez = E ′z , E⊥ = γ
(
E ′⊥ − v × B ′

)
,

Bz = B ′z , B⊥ = γ

(
B ′⊥ +

1

c2
v × E ′

)
, (13.27)

where E ′⊥ and B ′⊥ are the components of the electric and
magnetic fields perpendicular to the velocity v : E ′⊥ = (Ex ,Ey ),
B ′⊥ = (Bx ,By ).
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Lorentz transformation of fields

The electromagnetic potentials (φ/c ,A) are transformed exactly
as the 4-vector (ct, r):

Ax = A ′x ,

Ay = A ′y ,

Az = γ
(
A ′z +

v

c2
φ ′
)
,

φ = γ(φ ′ + vA ′z) , (13.28)
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Lorentz transformation and photons

It is often convenient, even in classical electrodynamics, to
consider electromagnetic radiation as a collection of photons. How
do we transform photon properties from K ′ to K? The answer is
simple: the wavevector k and the frequency of each photon ω is
transformed as described above. The number of photons is a
relativistic invariant—it is the same in all frames.
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Selected electrostatic problems
(Lecture 14)

June 17, 2013
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Lecture outline

In this lecture, we demonstrate how to solve several electrostatic
problems related to calculation of the fields generated by beams of
charged particles in an accelerator.
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Electric field of a 3D Gaussian distribution

A bunch of charged particles in accelerator physics is often
represented as having a Gaussian distribution function in all three
directions so that the charge density ρ is

ρ(x , y , z) =
Q

(2π)3/2σxσyσz
e−x2/2σ2x−y2/2σ2y−z2/2σ2z , (14.1)

where σx , σy , and σz are the rms bunch lengths in the
corresponding directions. What is the electric field of such bunch?
This is a purely electrostatic problem.

Due to the Lorentz transformations the bunch length in the beam
frame is γ times longer than in the lab frame, σz ,beam = γσz ,lab.
We assume that this factor is already taken into account and σz in
(14.1) is bunch length in the beam frame.
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Electric field of a 3D Gaussian distribution

The electrostatic potential φ satisfies the Poisson equation

∇2φ = −
ρ

ε0
, (14.2)

whose solution can be written as

φ(x , y , z) =
1

4πε0

∫
ρ(x ′, y ′, z ′)dx ′dy ′dz ′

[(x − x ′)2 + (y − y ′)2 + (z − z ′)2]1/2
.

(14.3)

It is not easy to carry out a three-dimensional integration in this
equation. A trick that simplifies it and reduces to a
one-dimensional integral is to use the following identity

1

R
=

√
2

π

∫∞
0

e−λ
2R2/2dλ . (14.4)
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Electric field of a 3D Gaussian distribution

Assuming that R = [(x − x ′)2 + (y − y ′)2 + (z − z ′)2]1/2 and
replacing 1/R in Eq. (14.3) with Eq. (14.4) we first arrive at the
four-dimensional integral

φ =
1

4πε0

√
2

π

∫∞
0

dλ

∫
e−λ

2[(x−x ′)2+(y−y ′)2+(z−z ′)2]/2

× ρ(x ′, y ′, z ′)dx ′dy ′dz ′ . (14.5)

With the Gaussian distribution (14.1) the integration over x ′, y ′

and z ′ can now be easily carried out, e.g.,∫∞
−∞ e−

1
2
λ2(x−x ′)2e

− x ′2

2σ2x dx ′ =

√
2π√

λ2 + σ−2
x

e
− x2λ2

2(λ2σ2x+1) , (14.6)
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Electric field of a 3D Gaussian distribution

which gives for the potential

φ =
1

4πε0

√
2

π

Q

σxσyσz

∫∞
0

dλ
e
− x2λ2

2(λ2σ2x+1) e
− y2λ2

2(λ2σ2y+1) e
− z2λ2

2(λ2σ2z+1)√
λ2 + σ−2

x

√
λ2 + σ−2

y

√
λ2 + σ−2

z

.

(14.7)

This integral is much easier to evaluate numerically, and it is often
used in numerical simulations of the field of charged bunches.
There are various useful limiting cases of this expression, such as
σx = σy (axisymmetric beam) or σx , σy � σz (a long, thin beam)
that can be analyzed.

241/441



Electric field of a 3D Gaussian distribution

Having found the potential in the beam frame, it is now easy to
transform it to the laboratory frame using the Lorentz
transformation. First we have to recall that σz is the bunch length
in the beam frame equal to γσz ,lab. Second, from the Lorentz
transformations we see that the potential in the lab frame is γ
times larger than in the beam frame (note that A ′z = 0). Third, we
need to transform the coordinates x , y , z to the lab frame. The x
and y coordinates are not transformed however z should be
replaced by γ(zlab − vtlab). The resulting expression is (we drop all
“lab” subscripts in what follows)

φ =
1

4πε0

√
2

π

Q

σxσyσz

∫∞
0

dλ√
λ2 + σ−2

x

√
λ2 + σ−2

y

√
λ2 + γ−2σ−2

z

× e
− x2λ2

2(λ2σ2x+1) e
− y2λ2

2(λ2σ2y+1) e
−

(z−vt)2λ2

2(λ2σ2z+γ
−2) . (14.8)
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Electric field of a 3D Gaussian distribution

In addition to the electrostatic potential, in the lab frame there is
also a vector potential Az responsible for the magnetic field of the
moving bunch. It is equal to Az = vφ/c2 with φ given by (14.8).
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Electric field of a continuous beam in a pipe

A continuous beam propagating inside a metallic pipe generates
electric and magnetic fields. In many applications it is important
to know these fields as a function of the beam position inside the
pipe. We assume that the beam propagates parallel to the axis of
a cylindrical pipe of a given cross section. The electrostatic
potential φ is a function of the transverse coordinates x and y .
We consider the beam as infinitely thin charged wire located at
position x = x0 and y = y0. Then the problem of finding the
electrostatic potential reduces to the solution of

∇2φ = −
Q̃

ε0
δ(x − x0)δ(y − y0) , (14.9)

where Q̃ is the charge per unit length of the beam. This equation
is to be solved with the boundary condition φ = 0 at the surface of
the pipe.
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Electric field of a continuous beam in a pipe

In cylindrical coordinate system r , θ

∆φ(r , θ) =
1

r

∂

∂r
r
∂φ

∂r
+

1

r2
∂2φ

∂θ2
(14.10)
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Electric field of a continuous beam in a pipe

In the simplest case of a beam located at the center of a round
pipe of radius a (x0 = y0 = 0), the solution is easily found in
cylindrical coordinates

φ = −
Q̃

2πε0
ln
( r
a

)
, (14.11)

with the field Er = Q̃/2πε0r .
What if the beam is not at the center of the round pipe? There is
also an analytical solution in this case. A compact form of this
solution is given as a real part of the complex function

φ = −
Q̃

2πε0
Re ln

a(z − z0)

a2 − zz0
, (14.12)

where z = x + iy and z0 = x0 + iy0.
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Electric field of a continuous beam in a pipe

If the beam is propagating in a pipe with a rectangular cross
section 0 ≤ x ≤ a, 0 ≤ y ≤ b, the potential is given by the
following expressions

φ0 =
2Q̃

πε0

∞∑
k=1

1

k sinh kπb
a

sinh
kπ(b − y0)

a
sinh

kπy

a

× sin
kπx0
a

sin
kπx

a
, for y < y0

φ0 =
2Q̃

πε0

∞∑
k=1

1

k sinh kπb
a

sinh
kπ(b − y)

a
sinh

kπy0
a

× sin
kπx0
a

sin
kπx

a
, for y > y0 . (14.13)
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Electric field of a continuous beam in a pipe

Equipotential lines for a round and rectangular pipes.
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Electric field of a continuous beam in a pipe

The approximation of an infinitely thin beam is useful for
evaluation of the potential outside of the beam. However it cannot
be used directly to calculate the potential between the center of
the beam and the wall.
Let us consider the case of an axisymmetric Gaussian beam at the
center of the round pipe with the charge density given by

ρ(r) =
Q̃

2πσ2
e−r2/2σ2 , (14.14)

with σ� a. In the infinitely thin beam approximation, the
potential is given by Eq. (14.11). This expression is valid for
r � σ; for r = 0 it gives an infinite value. To find the potential for
a Gaussian beam we need to solve

1

r

d

dr
r
dφ

dr
= −

Q̃

2πσ2ε0
e−r2/2σ2 . (14.15)
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Electric field of a continuous beam in a pipe

The solution of this equation that has a finite electric field on the
axis and satisfies the boundary condition at the wall is

φ =
Q̃

2πε0

∫a
r

dr ′

r ′

(
e−r ′2/2σ2 − 1

)
. (14.16)

In the limit r � σ we recover Eq. (14.11). The potential
difference between the center of the beam and the wall is

φ(r = 0) =
Q̃

2πε0

∫a
0

dr ′

r ′

(
e−r ′2/2σ2 − 1

)
. (14.17)
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Electric field near metallic edges and protrusions

The electric field has a tendency to concentrate near sharp metallic
edges and thin conducting protrusions. We illustrate this effect on
several solvable problems of electrostatics.
The first problem is the field of a charged metallic ellipsoid.
Assume that the shape of the ellipsoid is given by the following
equation

x2

a2
+

y2

b2
+

z2

z2
= 1 , (14.18)

where a, b and c are the half axes of the ellipsoid in the
corresponding directions. The charge of the ellipsoid is equal to Q.
This charge will be distributed on the surface of the solenoid so
that the electrostatic potential φ is constant on the surface.
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Electric field near metallic edges and protrusions

We will give here a solution of this problem without derivation. Let
us assume that a ≥ b ≥ c > 0. We introduce a function λ(x , y , z)
that is defined as a positive solution of the following equation

x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1 . (14.19)

The value λ = 0 corresponds to the surface of the ellipsoid.
Then the potential φ outside of the ellipsoid charged with the
charge Q is given by the following integral

φ(x , y , z) =
Q

2

∫∞
λ(x ,y ,z)

dξ√
(a2 + ξ)(b2 + ξ)(c2 + ξ)

. (14.20)
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Electric field near metallic edges and protrusions

In the case of an elongated axisymmetric ellipsoid (b = c) the
integration can be done in elementary functions with the result

φ(x , y , z) =
Q√

a2 − b2
ln

√
b2 + λ√

a2 + λ−
√
a2 − b2

. (14.21)
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Field lines of an ellipsoid
with a = 4 and b = 0.5 in
the plane z = 0. One can
see that the field is inten-
sified near the ends of the
ellipsoid.
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Electric field near metallic edges and protrusions

Distribution of the electric field on the surface of the ellipsoid.
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Electric field near metallic edges and protrusions
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Figure : Ellipsoidal protrusion. Figure : Contour plot of the
potential around protruding
ellipsoidal shape.
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Electric field near metallic edges and protrusions

Amplification of the field near sharp edges is most clearly visible in
2D solutions of the Laplace equation near such edges. Consider
the following problem: find the potential φ(r , θ) in cylindrical
coordinates that satisfies the equation ∇2φ = 0 in the region
0 ≤ θ ≤ α with the boundary condition φ = 0 at θ = 0 and θ = α.

α

x

y

Figure : Coordinate system near an edge.
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Electric field near metallic edges and protrusions

We have

1

r

∂

∂r
r
∂φ

∂r
+

1

r2
∂2φ

∂θ2
= 0 . (14.22)

It is easy to see that this equation is satisfied by the following
solution φ = rn sin(nθ) for arbitrary n. To satisfy the boundary
condition, we require sin(nα) = 0 which gives n = π/α. Hence

φ = Arπ/α sin

(
πθ

α

)
, (14.23)

where A is a constant. The electric field has a singularity if n < 1;
it follows from the above expression that the field is singular when
α > π. In the limit α→ 2π, which corresponds to the edge of a
metallic plane, the potential scales as φ ∝

√
r , and the field has a

singularity E ∝ 1/
√
r .
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Electric field near metallic edges and protrusions
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Figure : Field lines near the edge with α = π/4 (left figure) and
α = 7π/4 (right figure).

It is interesting to note that the electric field near a sharp tip of a
charged thin conical needle increases approximately as 1/r , where
r is the distance to the tip of the needle.
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Self field of a relativistic beam
(Lecture 15)

June 17, 2013
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Lecture outline

We will study the electromagnetic field of a bunch of charged
particles moving with relativistic velocity along a straight line.
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Relativistic field of a particle moving with constant velocity

Consider a point charge q moving with a constant velocity v along
the z axis. We are interested in the case of a relativistic velocity,
v ≈ c , or γ� 1. In the particle’s reference frame it has a static
Coulomb field,

E ′ =
1

4πε0

qr ′

r ′3
, (15.1)

where the prime indicates the quantities in the reference frame
where the particle is at rest.

z'

y' E'

r'

z

y E

r

vt
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Relativistic field of a particle moving with constant velocity

To find the electric and magnetic fields in the lab frame we will use
the Lorentz transformation (13.10) for coordinates and time, and
the transformation for the fields (13.27). We have Ex = γE ′x ,
Ey = γE ′y , and Ez = E ′z . We also need to make a Lorentz
transform of the vector r ′ back into the lab frame. For the length
of this vector we have

r ′ =
√
x ′2 + y ′2 + z ′2 =

√
x2 + y2 + γ2(z − vt)2
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Relativistic field of a particle moving with constant velocity

The Cartesian coordinates of E are

Ex =
1

4πε0

qγx

(x2 + y2 + γ2(z − vt)2)3/2

Ey =
1

4πε0

qγy

(x2 + y2 + γ2(z − vt)2)3/2

Ez =
1

4πε0

qγ(z − vt)

(x2 + y2 + γ2(z − vt)2)3/2
. (15.2)

These three equations can be combined into a vectorial one

E =
1

4πε0

qr

γ2R3
. (15.3)

Here vector r is drawn from the current position of the particle to
the observation point, r = (x , y , z − vt), and R is given by

R =
√
(z − vt)2 + (x2 + y2)/γ2 . (15.4)
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Relativistic field of a particle moving with constant velocity

As follows from Eqs. (13.27), a moving charges carries magnetic
field

B =
1

c2
v × E . (15.5)
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Relativistic field of a particle moving with constant velocity

The above fields can be also obtained by transforming the
potentials. Indeed, in the particle’s frame we have

φ ′ =
1

4πε0

q

r ′
, A ′ = 0 . (15.6)

Using the Lorentz transformation (13.28) we find

φ = γφ ′ , A =
1

c
βφ . (15.7)

Expressing r ′ in terms of the coordinates in the lab frame,
r ′ = γR, gives

φ =
1

4πε0

q

R
, A =

Z0

4π
β
q

R
. (15.8)
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Relativistic field of a particle moving with constant velocity

The field of a relativistic point charge is illustrated below. Within a
narrow cone with the angular width ∼ 1/γ the field is large,
E ∼ qγ/r . On the axis the field is weak, E ∼ 1/rγ2. The absolute
value of the magnetic field is almost equal to that of the electric
field.

γ

zv

-1
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Relativistic field of a particle moving with constant velocity

Sometimes we can neglect the small angular width of the
electromagnetic field of a relativistic particle and consider it as an
infinitely thin “pancake”, E ∝ δ(z − ct). This approximation
formally corresponds to the limit v → c . Because the field is
directed along the vector drawn from the current position of the
charge, more precisely, we can write E = Aρδ(z − ct) where
ρ = x̂x + ŷ y and A is a constant. The magnitude of A is
determined by requiring that the areas under the curves Ex(z) and
Ey (z) agree with the ones given by Eq. (15.3) in the limit γ→ ∞.
This exercise yields (see homework problem 15.3)

E ' 1

4πε0

2qρ

ρ2
δ(z − ct) , B =

1

c
ẑ × E . (15.9)
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Interaction of Moving Charges in Free Space

Let us now consider a source particle of charge q moving with
velocity v , and a test particle of unit charge moving behind the
leading one on a parallel path at a distance l with an offset x . We
want to find the force which the source particle exerts on the test
one.

1 v

v2
E

z

x

l

x



Figure : A leading particle 1 and a trailing particle 2 traveling in free
space with parallel velocities v . Shown also is the coordinate system x , z .
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Interaction of Moving Charges in Free Space

The longitudinal force is

Fl = Ez = −
1

4πε0

ql

γ2(l2 + x2/γ2)3/2
, (15.10)

and the transverse force is

Ft = Ex − vBy =
1

4πε0

qx

γ4(l2 + x2/γ2)3/2
. (15.11)

In accelerator physics, the force F is often called the space charge
force.
The longitudinal force decreases with the growth of γ as γ−2 (for
l & x/γ). For the transverse force, if l � x/γ, Ft ∼ γ

−4, and for
l = 0, Ft ∼ γ

−1. Hence, in the limit γ→ ∞, the electromagnetic
interaction in free space between two particles on parallel paths
vanishes.
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Field of a long-thin relativistic bunch of particles

We consider a relativistic bunch of length σz much larger than the
bunch radius σz � σ⊥. The bunch is moving in the longitudinal
direction along the z axis with a relativistic factor γ� 1. What is
the electric field of this bunch?

γ

zv

-1
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Field of a long-thin relativistic bunch of particles

We first calculate the radial electric field outside of the bunch at
distance ρ from the z axis. Assuming that ρ� σ⊥ we can neglect
the transverse size of the beam and represent it as a collection of
point charges located on the z axis. Each such charge generates
the electric field given by Eq. (15.3). From this equation we find
that the radial component dE⊥ created by an infinitesimally small
charge dq ′ located at coordinate z ′ is

dE⊥(z , z ′, ρ) =
1

4πε0

ρdq ′

γ2((z − z ′)2 + ρ2/γ2)3/2
, (15.12)

where z and ρ =
√

x2 + y2 refer to the observation point. To find
the field of the bunch we assume that the bunch 1D distribution
function is given by λ(z) (

∫
λ(z)dz = 1), so that the charge dq ′

within dz ′ is equal to Qλ(z ′)dz ′, with Q the total charge of the
bunch.
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Field of a long-thin relativistic bunch of particles

For the field, we need to add contributions of all elementary
charges in the bunch:

E⊥(z , ρ) =

∫
dE⊥(z , z ′, ρ)

=
Qρ

4πε0γ2

∫∞
−∞

λ(z ′)dz ′

((z − z ′)2 + ρ2/γ2)3/2
. (15.13)

The function ((z − z ′)2 + ρ2/γ2)−3/2 in this integral has a sharp
peak of width ∆z ∼ ρ/γ at z = z ′. At distances ρ� σzγ from the
bunch the width of the peak is smaller than the width of the
distribution function σz , and we can replace it by the delta
function. Precisely, we use

1

((z − z ′)2 + ρ2/γ2)3/2
→ 2γ2

ρ2
δ(z − z ′) . (15.14)
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Field of a long-thin relativistic bunch of particles

The factor in front of the delta function on the right hand side
follows from the requirements that the area under the functions on
the left hand side and on the right hand side should be equal, and
from the mathematical identity∫∞

−∞
dz ′

((z − z ′)2 + a2)3/2
=

2

a2
.

The approximation (15.14) is equivalent to using Eqs. (15.9)
instead of (15.3). The result is

E⊥(z , ρ) =
1

4πε0

2Qλ(z)

ρ
. (15.15)

We see that the factor γ does not enter this formula—this agrees
with our expectation because Eqs. (15.9) are valid in the limit
γ→ ∞.
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Field of a long-thin relativistic bunch of particles

In the opposite limit, ρ� σzγ, we can replace λ(z) in Eq. (15.13)
by the delta function δ(z), which gives the field of a point charge

E⊥(z , ρ) =
1

4πε0

Qργ

(z2γ2 + ρ2)3/2
. (15.16)

In the intermediate region, ρ ∼ σzγ, the result is shown on the
next slide for a Gaussian distribution function
λ(z) = (1/

√
2πσz)e

−z2/2σ2z .
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Field of a long-thin relativistic bunch of particles
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Figure : Transverse electric field of a relativistic bunch with Gaussian
distribution for various values of the parameter ρ/σzγ. This parameter
takes the values of 0.1, 0.5, 1 and 3 with larger values corresponding to
broader curves. The field is normalized by (4πε0)

−1Q/ρσz .
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Field of a long-thin relativistic bunch of particles
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Figure : Electric field lines of a thin relativistic bunch with γ = 10. The
red line at the bottom shows the longitudinal Gaussian charge
distribution in the bunch.
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Longitudinal field of a bunch

What is the longitudinal electric field inside the bunch? If we
neglect the transverse size of the beam and assume the same
infinitely-thin-beam approximation we used above, we can try to
integrate the longitudinal field of a unit point charge

dE‖(z , z ′) =
dq ′

4πε0γ2
z − z ′

|z − z ′|3
, (15.17)

as we did above for the transverse field:

E‖(z) =

∫
dE‖(z , z ′)

=
Q

4πε0γ2

∫
dz ′λ(z ′)

z − z ′

|z − z ′|3
, (15.18)

but the integral diverges at z ′ → z . This divergence indicates that
one has to take into account the finite transverse size of the beam.
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Longitudinal field of a bunch

Assume a uniform radial distribution of charge in the beam of
radius a. Slice the beam into infinitesimal disks of thickness dz ′.

a z

z'

z

Figure : Left panel: a beam of cylindrical cross section a; right panel: a
slice of the beam located at z ′.
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Longitudinal field of a bunch

If the slice has a unit charge and is located at coordinate z ′, the
longitudinal electric field on the axis z at point z is

E‖(z , z ′) = −
1

4πε0

2

a2
(z − z ′)

(
1√

a2/γ2 + (z − z ′)2
−

1

|z − z ′|

)
.
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Longitudinal field of a bunch

The longitudinal electric field on the axis of the bunch is obtained
by integration of contributions from the slices

E‖(z) = −

∫∞
−∞ dz ′Qλ(z ′)E‖(z , z ′) (15.19)

= −
Q

4πε0

2

a2

∫∞
−∞ dz ′λ(z ′)(z − z ′)(

1√
a2/γ2 + (z − z ′)2

−
1

|z − z ′|

)
.

280/441



Numerical result for a Gaussian bunch

We assume Gaussian distribution λ(z) = (1/
√

2πσz)e
−z2/2σ2z .

-2 0 2
z�Σz

-1

0

1
E
ÈÈ

E‖ for various values of the parameter a/γσz : 0.1, 0.01, and
0.001. Smaller values corresponding to higher fields. The field is
normalized by (4πε0)

−12Q/γ2σ2z .
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Field of a long-thin relativistic bunch of particles

One can show that in the limit a/γσz � 1 a crude estimate for E‖
is:

E‖ ∼
1

4πε0

Q

σ2zγ
2

log
σzγ

a
. (15.20)

Formally, this expression diverges in the limit of infinitely thin
beam (a → 0), but in reality the effect of the longitudinal electric
field for relativistic beams is often small because of the factor γ−2

(a so called space charge effect).
The magnetic field of the beam

B =
v

c2
ẑ × E .

For an axisymmetric beam this means azimuthal magnetic field
Bφ = βE⊥/c .
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Effect of environment on
electromagnetic field of a beam

(Lecture 16)

June 17, 2013
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Lecture outline

We first consider a relativistic beam moving in a perfectly
conducting beam pipe. We the derive the Leontovich boundary
condition, and derive the resistive wall wake field. We also discuss
how a protrusion in a form of an iris affects the beam.
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Introduction

We discussed in a previous lecture that electromagnetic interaction
between particles of a relativistic beam moving in free space is
suppressed. In practice, such interaction is often determined by the
presence of material walls of the vacuum chamber and occurs if 1)
the pipe is not cylindrical (which is usually due to the presence of
RF cavities, flanges, bellows, beam position monitors, slots, etc., in
the vacuum chamber), or 2) the wall of the chamber is not
perfectly conducting.
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Beam Moving in a Perfectly Conducting Pipe

Particle of a relativistic beam moving parallel to the axis in a
perfectly conducting cylindrical pipe of arbitrary cross section, in
the limit v = c , do not interact with each other.

image charges

Mathematically, the boundary condition for the fields on the
surface of a perfectly conducting metal is

E t = 0 . (16.1)
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Simplified Maxwell’s equations

To understand interaction of a beam with a metallic wall, we need
to consider effects of finite conductivity, or resistive wall effect.
We start with quick derivation of a so called skin effect.
The skin effect deals with the penetration of the electromagnetic
field inside a conducting medium characterized by a conductivity σ
and magnetic permeability µ. We neglect the displacement current
∂D/∂t in Maxwell’s equations in comparison with j :

∇× H = j , ∇ · B = 0 , ∇× E +
∂B

∂t
= 0 , j = σE .

(16.2)

One finds the diffusion equation for the magnetic field B:

∂B

∂t
= σ−1µ−1∇2B . (16.3)
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Skin effect

z=0

x Hx

z

A metal occupies a semi-infinite volume z > 0 with the vacuum at
z < 0, and assume that at the metal surface the x-component of
magnetic field is given by Hx = H0e

−iωt . Due to the continuity of
the tangential components of H, Hx is the same on both sides of
the metal boundary, that is at z = +0 and z = −0.
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Skin effect

Seek solution inside the metal in the form Hx = h(z)e−iωt .
Equation (16.3) then reduces to

d2h

dz2
+ iµσωh = 0 , (16.4)

with the solution h = H0e
ikz and

k =
√

iµσω = (1 + i)

√
µσω

2
. (16.5)

Note that Im k > 0 and the field exponentially decays into the
metal. The quantity δ,

δ =

√
2

µσω
, (16.6)

is called the skin depth; it characterizes how deeply the
electromagnetic field penetrates the metal.
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Skin effect

In many cases the magnetic properties of the metal can be
neglected, then µ = µ0

δ =

√
2c

Z0σω
. (16.7)

The electric field inside the metal has only y component; it can be
found from the first and the last of Eqs. (16.3)

Ey =
jy
σ

=
1

σ

dHx

dz
=

ik

σ
Hx =

i − 1

σδ
Hx . (16.8)

The mechanism that prevents penetration of the magnetic field
deep inside the metal is generation of a tangential electric field,
that drives the current in the skin layer and shields the magnetic
field.
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The Leontovich boundary condition

The relation (16.8) can be rewritten in vectorial notation:

E t = ζH × n , (16.9)

where n is the unit vector normal to the surface and directed
toward the metal, and

ζ(ω) =
1 − i

σδ(ω)
. (16.10)

Eq. (16.9) is called the Leontovich boundary condition.
In the limit σ→ ∞ we have ζ→ 0 and we recover the boundary
condition (16.1) of zero tangential electric field on the surface of a
perfect conductor. Remember that ζ is a function of ω — Fourier
representation of the field.
At large frequencies the conductivity begin to depend on frequency,
ac conductivity. Anomalous skin effect at low frequencies or very
high frequencies.
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Round pipe with resistive walls

Consider a round pipe of radius b, with wall conductivity σ. A
point charge moves along the z axis of the pipe with v = c ,
z = ct. Because of the symmetry of the problem, the only
non-zero component of the electromagnetic field on the axis is Ez .
Our goal now is to find the field Ez as a function of z and t.

b
Ez

z
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Round pipe with resistive walls

Main steps to find Ez :

Take the magnetic field Bθ(ρ, z , t) of the charge (moving with
v = c) in vacuum. It is equal to the field in perfectly
conducting pipe. Assume, that it does not change much
because the conductivity of the wall is large.
Make Fourier transformation of Bθ(ρ, z , t) with respect to
time, Bθ(ρ, z , t) → B̂θ(ρ,ω).
Use the Leontovich boundary conditions and find Êz |ρ=b on
the wall

Êz |ρ=b = −ζ
B̂θ(b)

µ0
.

Use the wave equation for the field Ez(ρ, z , t), make Fourier
transformation of it, and take into account that
Ez = Ez(ρ, z − ct). Conclude from this equation that Ez does
not depend on ρ: Êz |ρ=0 = Êz |ρ=b.
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Round pipe with resistive walls

We obtain

Ez(z , t) =
qc

4π3/2b

√
Z0

σs3
h(s) , (16.11)

with s = ct − z .

For the points where s < 0, located in front of the charge, Ez = 0
in agreement with the causality principle. The positive sign of Ez

indicates that a trailing charge (if it has the same sign as q) will be
accelerated in the wake.
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Short distance from the charge

The magnitude of Ez increases with decreasing s. At small
distances the displacement current

jdispz = ε0
∂Ez

∂t
,

starts to change the magnetic field on the wall, and that in turn
changes Ez . This happens at the distance

s ∼ s0 =

(
2b2

Z0σ

)1/3

. (16.12)

For b = 5 cm

Metal Copper Aluminium Stainless Steel

s0, µm 60 70 240
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Short distance from the charge

0 2 4 6
s�s0

-4

-2

0

E
z

Longitudinal electric field as a
function of distance s from the
particle. The field is normal-
ized by q/4πε0b

2, and the dis-
tance is normalized by s0.

The value of the normalized field at the origin is equal to

−
q

πε0b2
.

It does not depend on the conductivity!
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Point charge passing through an iris

A relativistic point charge, γ� 1, moving in a pipe that has a
diaphragm with round hole of radius a. We assume that a is much
smaller than the pipe radius R and simplify to R → ∞.

297/441



Point charge passing through an iris

The physics: the iris cuts off a part of the electromagnetic field,
r > a, that hits the metal.
The frequency: the duration of the field pulse on the edge of the
iris (where the field is strongest) is of the order of ∆t ∼ a/cγ.
Hence characteristic frequencies are ω ∼ cγ/a.

z

~a�Γ

The energy loss: calculate the energy U of the
electromagnetic field that is “clipped away” by
the iris. The field is given by Eq. (15.3) and
(15.5),

Eρ = cBθ =
1

4πε0

γqρ

(ρ2 + γ2z2)3/2
.

The energy density w of the electromagnetic
field is

w =
ε0

2
(E 2
ρ + c2B2

θ) .
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Point charge passing through an iris

Integrating w over the region ρ > a and over z yields

U =

∫∞
a

2πρ dρ

∫∞
−∞ dz w =

3

64ε0

q2γ

a
. (16.13)

We expect that the radiated energy will be of the order of U, and
the spectrum of radiation will involve the frequencies up to
λ ∼ a/γ (λ = 1/k).
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Point charge—analytical solution

The problem allows for an analytical solution. The radiated energy
spectrum is

dW
dω

=
1

2π2ε0

q2

c
F

(
ak

γ

)
, (16.14)

where F (x) = x2
[
K0 (x)K2 (x) − K1 (x)

2
]
, with Kn the modified

Bessel function of the second kind.
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Point charge—analytical solution

The total radiated energy W is obtained by integrating dW/dω
over the frequency: ∫∞

0

dW
dω

d ω =
3

32ε0

q2γ

a
. (16.15)

This is twice the clipped energy.

Explanation: The clipped field is reflected back by the screen, and
is radiated in the backward direction. The same amount of energy
is radiated by the screen in the forward direction when the particle
rebuilds its original Coulomb field far from the screen.
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Gaussian bunch passing through an iris

For a Gaussian bunch passing through the iris we take into account
the pipe radius R. We assume no particles hit the iris, the bunch
length satisfies the condition σz > R/γ, and use Eq. (15.15) for
the beam transverse field. Also, σ⊥ < a.

z

The energy loss: The electromagnetic
energy localized between the radii a and
R is:

U =
ε0

2

∫∞
−∞ dz

∫R
a

2πρdρ(E 2 + c2B2)

= ε0

∫∞
−∞ dz

∫R
a

2πρdρE 2
⊥ .

U =
1

16π2ε0

4Q2
√
π

σz
ln

(
R

a

)
.
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Gaussian bunch passing through an iris

The ratio of this energy to the kinetic energy of the beam Nγmc2

(N is the number of particles in the beam) is

U

Nγmc2
=

1

16π2ε0

4Nq2
√
π

γmc2σz
ln

(
R

a

)
=

1√
π

Nr0
γσz

ln

(
R

a

)
, (16.16)

where q is the particle’s charge (Q = Nq) and r0 = q2/4πε0mc2 is
the classical radius. For electrons r0 = 2.82 · 10−13 cm and for
protons r0 = 1.53 · 10−16 cm.
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Gaussian bunch passing through an iris

In contrast to a diaphragm, a smooth enough transition does not
“scrape away” the electromagnetic field. When a beam passes
through a smooth transition in a pipe its field is adiabatically
adjusted to the shape of the local cross-section. It does not cause
the energy loss but usually results in energy exchange between
different parts of the beam (the head and the tail).

Even if the transition is not smooth, the radiation is suppressed for
very long bunches, such that the characteristic frequency ω
involved in the variation of the beam field, ω ∼ c/σz , is smaller
than cut off frequency of the pipe.

304/441



Plane electromagnetic waves and Gaussian beams
(Lecture 17)

June 18, 2013
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Lecture outline

In this lecture we will study electromagnetic field propagating in
space free of charges and currents. We focus on two types of
solutions of Maxwell’s equations: plane electromagnetic waves and
Gaussian beams.
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Plane electromagnetic waves

A plane electromagnetic wave propagates in free space (without
charges and currents). All components of the field depend only on
the variable ξ = z − ct,

E (r , t) = F (ξ) , B(r , t) = G (ξ) . (17.1)

From the equation ∇ · E = 0 if follows that ∂Fz/∂ξ = 0, and
hence Fz = 0. Similarly, Gz = 0 because of ∇ · B = 0. We see that
a plane wave is transverse.

We now apply Maxwell’s equation ∂B/∂t = −∇× E to the fields
(17.1). We have

F ′x = cG ′y , F ′y = −cG ′x , (17.2)

hence Fx = cGy and Fy = −cGx .
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Plane electromagnetic waves

In vector notation F = −cn × G or

E = −cn × B , (17.3)

where n is a unit vector in the direction of propagation (in our case
along the z axis). Multiplying vectorially Eq. (17.3) by n, we also
obtain

B =
1

c
n × E . (17.4)

If we use potentials φ and A to describe a plane wave, they would
also depend on ξ only: φ = φ(ξ), A = A(ξ).
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Plane electromagnetic waves

We have

B = ∇× A

= −x̂A ′y + ŷA ′x

= n × A ′

= −
1

c
n × ∂A

∂t
. (17.5)

After the magnetic field is found, we can find the electric field
using Eq. (17.3).
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Plane electromagnetic waves

Often a plane wave has a sinusoidal time dependence with some
frequency ω. In this case it is convenient to use the complex
notation:

E = Re (E 0e
−iωt+ikr+iφ0) , B = Re (B0e

−iωt+ikr+iφ0) ,

where E 0 and B0 are the amplitudes of the wave, and k = nω/c is
the wave number. The wave propagates in the direction of k ; the
amplitude of the electric and magnetic fields are E0 = cB0.

In general, E 0 and B0 can be complex vectors orthogonal to k ,

e.g., E 0 = E
(r)
0 + iE

(i)
0 with E

(r)
0 and E

(i)
0 real. Purely real of

purely imaginary E 0 corresponds to a linear polarization of the
wave; a complex vector E 0 describes an elliptical polarization.
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Plane electromagnetic waves

The Poynting vector gives the energy flow in the wave

S = E × H =

√
ε0

µ0
E 2
0 n cos2(ωt + kr + φ0) , (17.6)

(in this formula E0 is assumed real). The energy flows in the
direction of the propagation k. Averaged over time energy flow, S̄ ,
is

S̄ =
1

2

√
ε0

µ0
E 2
0 n =

1

2Z0
E 2
0 n =

c2

2Z0
B2
0n . (17.7)

Energy density in the plane wave

ū =
1

2

ε0

2
(E 2

0 + c2B2
0 ) =

ε0

2
E 2
0

We have
S̄ = cu .
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Plane electromagnetic waves

local plane wave

here

local plane wave

here

source of radiation

n

n

Electromagnetic field looks like a
plane wave locally in some limited
region.

An arbitrary solution of Maxwell’s equations in free space (without
charges) can be represented as a superposition of plane waves with
various amplitudes and directions of propagation.
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Gaussian beams

We consider another important example of electromagnetic field in
vacuum—Gaussian beams. They are typically used for description
of laser beams. They can be understood as a collection of plane
waves with the same frequency propagating at small angles to a
given direction—a so called paraxial approximation.

313/441



Gaussian beams

Start from the wave equation (13.4) for the x component of the
electric field (a linear polarization of the laser light)

∂2Ex

∂x2
+
∂2Ex

∂y2
+
∂2Ex

∂z2
−

1

c2
∂2Ex

∂t2
= 0 , (17.8)

and assume

Ex(x , y , z , t) = u(x , y , z)e−iωt+ikz , (17.9)

where u is a slow function of its arguments, and ω = ck . More
specifically, we require∣∣∣∣1u ∂u∂z

∣∣∣∣� k ,

∣∣∣∣1u ∂u∂t
∣∣∣∣� ω . (17.10)

Physical fields are the real part of Ex .
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Gaussian beams

Main steps in the derivation of Gaussian beams:

Neglect ∂2u/∂z2 in comparison with k∂u/∂z .

Assume axisymmetry u = u(ρ, z) with ρ =
√
x2 + y2.

Seek solution in the form

u = A(z)eQ(z)ρ2

The result is

Q(z) = −
1/w2

0

1 + 2iz/kw2
0

, (17.11)

where w0 is one constant of integration (called the waist) and

A(z) =
E0

1 + 2iz/kw2
0

, (17.12)

where E0 is another constant of integration.
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Gaussian beams

We now introduce important geometrical parameters: the Rayleigh
length ZR and the angle θ:

ZR =
kw2

0

2
, θ =

w0

ZR
=

2

kw0
. (17.13)

They can also be written as

ZR = 2
λ

θ2
, w0 = 2

λ

θ
, (17.14)

where λ = k−1 = c/ω.
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Gaussian beams

At z = 0 the radial dependence of u is ∝ e−ρ
2/w2

0 —w0 gives the
transverse size of the focal spot here. At ρ = 0
u = E0/(1 + iz/ZR)—ZR is the characteristic length of the focal
region along the z axis.

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

z/ZR

Ρ
/w

0 Contour lines of constant ampli-
tude |u|.

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

z/ZR

Ρ
/w

0 Contour lines of constant phase φ,
with u = |u|e iφ.
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Gaussian beams

Condition for the validity of the paraxial approximation:
∂2u/∂z2 ∼ u/Z 2

R � k∂u/∂z ∼ ku/ZR → ZR � λ. From this
condition it follows that λ� w0 � ZR and θ� 1. This means
that the size of the focal spot w0 is much larger than the reduced
wavelength, and θ� 1.

The magnetic field in a Gaussian beam the lowest approximation
can be found, in the lowest order, by using Eq. (17.4), where n is
directed along z ,

By =
1

c
Ex . (17.15)
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RF cavities
(Lecture 25)

June 18, 2013
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Lecture outline

A good conductor has a property to guide and trap
electromagnetic field in a confined region. In this lecture we will
consider an example of a radio frequency (RF) cavity, and discuss
some of its properties from the point of view of acceleration of
charged particles. We then discuss the electromagnetic pressure
and derive Slater’s formula.
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Waveguide, TM modes

Let us consider a cylindrical waveguide of radius a made from a
perfect conductor. Such a waveguide has a number of
electromagnetic modes that can propagate in it. We will focus first
our attention here on so called TM modes that have a nonzero
longitudinal component of the electric field Ez , with Bz = 0. To
find the distribution of the electric field in the waveguide for a
mode that has frequency ω, we will assume that in cylindrical
coordinates r , φ, z ,

Ez(r , φ, z , t) = E(r)e−iωt−imφ+iκz , (25.1)

use Eq. (13.4) for Ez

1

r

d

dr
r
dE
dr

−
m2

r2
E +

(
ω2

c2
− κ2

)
E = 0 . (25.2)
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Waveguide, TM modes

The solution of this equation is given by

E = E0Jm (k⊥r) , (25.3)

where Jm is the Bessel function of m-th order and k⊥ = c−1
√
ω2 − c2κ2.

The boundary condition Ez = 0 at r = a requires that k⊥r be equal to a
zero of Jm. For each function Jm there is an infinite sequence of such
zeros, which we denote by jm,n with n = 1, 2, . . ..
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Waveguide, TM modes

Hence k⊥ = jm,n/a and recalling the definition of k⊥ we find that

κm,n = ±
(
ω2

c2
−

j2m,n
a2

)1/2

. (25.4)

In order for a mode with indices m and n to have a real value of κ,
its frequency should be larger than the cut-off frequency cjm,n/a.
The plus sign defines the modes propagating in the positive
direction, and the minus sign corresponds to the modes in the
opposite direction. If ω < cjm,n/a, then we deal with evanescent
modes that exponentially decay along the z-axis (and,
correspondingly exponentially grow in the opposite direction).
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Waveguide, TM modes

Given Ez(r , φ, z , t) as defined by (25.1) we can find all other
components of the electric and magnetic fields using Maxwell’s
equations. They will all have the same dependence e−iωt−imφ+iκz

versus time, angle and z . The radial distribution of the four
unknown components Eφ, Er , Bφ and Br (remember that Bz = 0)
are found from the four algebraic equations, which are r and φ
components of the two vectorial equations ∇× E = iωB and
c2∇× B = −iωE .
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Waveguide, TM modes

Here is the result

Er = E0
iκm,na

jm,n
J ′m

(
jm,n

r

a

)
e−iωt−imφ+iκm,nz (25.5)

Eφ = −E0
mκm,na

2

rj2m,n
Jm
(
jm,n

r

a

)
e−iωt−imφ+iκm,nz (25.6)

Br = E0
mωa2

c2rj2m,n
Jm
(
jm,n

r

a

)
e−iωt−imφ+iκm,nz (25.7)

Bφ = E0
iωa

c2jm,n
J ′m

(
jm,n

r

a

)
e−iωt−imφ+iκm,nz , (25.8)

where J ′m is the derivative of the Bessel function of order m and we
dropped the indices m, n on the left sides. These modes are
designated TMmn or Emn. Example: TM01.
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Waveguide, TM modes

Note that in addition to vanishing Ez on the wall, which we have
satisfied by choosing k⊥ = jm,n/a, we should also require Eφ = 0
on the surface of the wall (because it is tangential there). This
however is automatically satisfied because the radial dependence of
Eφ in (25.6) is the same as Ez in (25.3).

The physical meaning has the real parts of Eqs. (25.5). Since the
longitudinal wavenumbers (25.4) do not depend on m, the modes
with positive and negative values of m (assuming m > 0) are
degenerate—they have the same values of κm,n. A sum and
difference of m and −m modes, which convert e imφ and e−imφ into
cosmφ and sinmφ, are often used as another choice for the set of
fundamental eigenmodes in circular waveguide.
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Waveguide, TE modes

Phase velocity of this modes is larger than the speed of light:

vph =
ω

κ
= c

ω

(ω2 − c2j2m,n/a
2)1/2

> c (25.9)

This means that we cannot use EM field in waveguides for
acceleration of charges. Disk loaded structures are used for that
purpose.
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Waveguide, TE modes

TE modes have nonzero longitudinal magnetic field Bz with Ez = 0.
Their derivation follows closely that of TM modes. A simple observation
of special symmetry of Maxwell’s equations allows one to obtain the
fields in TE modes without any calculation.
Indeed, assuming the time dependence ∝ e−iωt for all fields, Maxwell’s
equations in free space are

∇× E = iωB, c2∇× B = −iωE , ∇ · E = 0, ∇ · B = 0.
(25.10)

Note that a transformation

(E ,B) → (cB,−E/c) (25.11)

converts (25.10) into itself. This means that having found a solution of

Maxwell’s equation one can be obtain another solution by means of a

simple transformation (25.11). The only problem with this approach is

that one has to make sure that the boundary conditions are also satisfied.
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RF modes in cylindrical resonator

Cylindrical resonator is a cylindrical pipe with the ends closed by
metallic walls. Various modes of electromagnetic field that can
exist in such a resonator are characterized by their frequency. The
resonator modes can be easily obtained from the waveguide modes
derived above.
In comparison with waveguides, a resonator requires one more
boundary condition—vanishing tangential electric field on the end
walls. Let’s assume that the resonator left wall is located at z = 0,
and the right wall is located at z = L. Start with TM modes. To
satisfy the boundary condition Er = Eφ = 0 at z = 0 we choose
two TM modes with the same frequency and the same m and n
indices but opposite values of κm,n (that is two identical waves
propagating in the opposite directions) add them and divide the
result by 2.
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RF modes in cylindrical resonator

Using

1

2
(e iκm,nz + e−iκm,nz) = cos(κm,nz), (25.12)

1

2
(κm,ne

iκm,nz − κm,ne
−iκm,nz) = iκm,n sin(κm,nz),

it is easy to see that both Er and Eφ = 0 acquire the factor
sin(κm,nz) and hence satisfy the boundary condition at z = 0. In
order to satisfy the boundary condition at the opposite wall, at
z = L, we require κm,nL = lπ, where l = 1, 2, . . . is an integer
number.
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RF modes in cylindrical resonator

The result is

Ez = E0Jm
(
jm,n

r

a

)
cos

(
lπz

L

)
e−iωt−imφ (25.13)

Er = −E0
κm,na

jm,n
J ′m

(
jm,n

r

a

)
sin

(
lπz

L

)
e−iωt−imφ

Eφ = −E0
imκm,na

2

rj2m,n
Jm
(
jm,n

r

a

)
sin

(
lπz

L

)
e−iωt−imφ

Br = E0
mωa2

c2rj2m,n
Jm
(
jm,n

r

a

)
cos

(
lπz

L

)
e−iωt−imφ

Bφ = E0
iωa

c2jm,n
J ′m

(
jm,n

r

a

)
cos

(
lπz

L

)
e−iωt−imφ.
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RF modes in cylindrical resonator

Eq. (25.4) should now be interpreted differently: we replace κm,n

by lπ/L, square it, and find the frequency ω of the mode

ω2

c2
=

(
lπ

L

)2

+
j2m,n
a2

. (25.14)

The modes given by (25.13) and (25.14) are called TMmnl modes.
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RF modes in cylindrical resonator

A similar procedure can be done with the TE modes, but instead
of adding, we need to subtract the mode with negative κm,n from
the mode with the positive κm,n and divide the result by 2i .
An important quantity associated with the mode is the energy W
of the electromagnetic field. This energy is given by the integral
over the volume of the cavity of (ε0/2)(E 2

z + c2B2
θ), where one has

to take the real parts of the fields before squaring them.
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TM010 mode

For illustration, let us calculate the energy of TM010 mode.

ω2
010

c2
=

j20,1
a2
, (25.15)

where j0,1 = 2.4.

Ez = E0J0
(
j0,1

r

a

)
e−iω010t (25.16)

Bφ = E0
iω010a

c2j0,1
J ′0

(
j0,1

r

a

)
e−iω010t .

The calculation can be simplified if one notices that although Ez

and Bθ depend on time, the energy W does not. Because there is
a phase shift of π/2 between these fields, one can find a moment
when Bθ = 0, and then

W =
ε0

2

∫
dV |Ez |

2 =
ε0

2
πE 2

0 a
2LJ21 (j1) , (25.17)

where we used
∫1
0 J

2
0 (bx)xdx = 1

2J
2
1 (b).
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TM010 mode

With account of the finite conductivity of the wall, one finds that an
initially excited mode decays with time because its energy is absorbed in
the walls. This damping results in the imaginary part γ in the mode
frequency, ω = ω ′ − iγ, where ω ′ and γ are real and positive. The
imaginary part of the frequency can be calculated with the help of the
Leontovich boundary condition.
A related quantity is the quality factor Q of the cavity equal to

Q =
ω ′

2γ
. (25.18)

The quality factor for the TM010 mode of the cylindrical cavity

Q =
aL

δ(a + L)
, (25.19)

where δ is the skin depth at the frequency of the cavity. A crude estimate
of the quality factor is Q ∼ l/δ, where l is a characteristic size of the
cavity (assuming that all dimensions of the cavity are of the same order).
Typical copper cavities used in accelerators have Q ∼ 104;
superconducting cavities may have Q ∼ 109.
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Electromagnetic field pressure

Electromagnetic field terminated by a conducting wall exerts a
force on this wall.

When electric field lines are terminated on metal surface

z

E

z

B

there are image charges with the surface density equal to ε0En, (n
is the normal to the surface of the metal).
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Electric field pressure

Consider in more detail distribution of the electric field inside the
metal. The metal occupies the region z > 0. The charge density
inside the metal is ρ(z), and the electric field is Ez(z).

dEz

dz
=
ρ(z)

ε0
. (25.20)

The force per unit area is given by the integral

f
(E )
z =

∫∞
0

dzρEz = ε0

∫∞
0

dzEz
dEz

dz
= −

ε0

2
E 2
n . (25.21)

The minus sign means that the electric field has a “negative
pressure”—it pulls the surface toward the free space.

Numerical example: for E = 35 MV/m the pressure is about 0.5
N/cm2.
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Magnetic field pressure

Tangential magnetic field also exerts a force on the surface.
Assume that the magnetic field By (z) is directed along y , and
varies along z due to the current jx(z) flowing in the x direction.

dHy

dz
= −jx (25.22)

and the force per unit area is

f
(M)
z =

∫∞
0

dzjxBy . (25.23)

We have

f
(M)
z = −

∫∞
0

dzBy
dHy

dz
=

1

2µ0
B2
t , (25.24)

We see that f
(M)
z is positive—it acts as a real pressure applied to

the surface.
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Side comment on magnetic field pressure

We briefly talked about a pressure tensor in force equations. For a
uniform magnetic field in the ẑ direction, the tensor describing the
magnetic pressure away from any boundary is B2/2µ0 0 0

0 B2/2µ0 0
0 0 −B2/2µ0

 . (25.25)

This has significant consequences for magnetized plasmas. The
negative, longitudinal term is called magnetic tension.
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Electromagnetic field pressure

The effect of the electromagnetic pressure causes a so called
Lorentz detuning in modern superconducting cavities which should
be compensated by a special control system.
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Slater’s formula

What happens to the frequency of a cavity, if its shape is slightly
distorted?

The frequency of modes changes. To calculate the frequency
change we compute the work against the electromagnetic field
needed to change the cavity shape.
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Slater’s formula

Assume that a mode is excited in the cavity and the distortion of
the cavity shape occurs slowly in comparison with the frequency of
the mode. This work, with a proper sign, is equal to the energy
change δW of the mode. Since the distortion is small, we can take
the unperturbed distribution of the electric and magnetic fields on

the surface, compute f
(E )
z + f

(M)
z and average over the period of

oscillations. This averaging introduces a factor of 1
2 .

δW =
1

2

∫
dS h

(
1

2µ0
B2
t −

ε0

2
E 2
n

)
, (25.26)

where h is positive in the case when the volume of the cavity
decreases, and it is negative in the opposite case, Bt and En are
the amplitude values of the field on the surface.
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Slater’s formula

We know from quantum theory that the number of quanta does
not change in adiabatically slow processes. Hence W /ω = const,

δω

ω
=
δW

W
. (25.27)

This gives us

δω

ω
=
ε0

4W

∫
∆V

dV
(
c2B2

t − E 2
n

)
, (25.28)

where the integration in the numerator goes over the volume of
the dent, and the integration in the denominator goes over the
volume of the cavity. This is often called Slater’s formula.

The perturbation must be small and cannot have any sharp
features, otherwise one cannot use the unperturbed fields.
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Radiation and retarded potentials
(Lecture 18)

June 18, 2013
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Lecture outline

In this lecture, based on simple intuitive arguments we derive the
Liénard-Wiechert potentials that solve the problem of the
electromagnetic field of a point charge moving in free space.
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Radiation field

Assume that a point charge was at rest until t = 0, and then it is
abruptly accelerated and moves with a constant velocity v at t > 0.

t

v a

t

v b

t
1
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Radiation field

How do electric field lines look like before and after the
acceleration?
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Radiation field

If the charge was moved twice, then at time t > t1 there will be
two spheres, with radiation layers between them.

A constantly accelerating charge will be radiating the spheres at
every moment of time, and those spheres will be expanding
increasing their radii with the speed of light.
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Retarded time and position

We need to figure out how to relate a point on such sphere to the
time and position of the charge when this particular sphere was
radiated. This time is called the retarded time and the position of
the particle is the retarded position. If the particle’s orbit is given
by r0(t), and we make an observation at time t at point r in
space, then the retarded time tret is determined from the equation

c(t − tret) = |r − r0(tret)| (18.1)

and the retarded position is r0(tret). Note that both tret and
r0(tret), for a given orbit of the particle (determined by the
function r0(t)) are functions of variables t and r .

349/441



Charge moving with constant velocity

In the limit when acceleration tends to zero, we obtain the limit of
constant velocity. Let us find the retarded time in this case.
A point charge is moving with a constant velocity v along the z
axis.

t v
×x

z

Figure : Point charge moving with constant velocity along the z-axis.
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Charge moving with constant velocity

First we need to find tret . Using

r0 = (0, 0, vt) (18.2)

and introducing t ′ = t − tret (tret = t − t ′) we square Eq. (18.1)

c2t ′2 = (z − v(t − t ′))2 + x2 + y2 . (18.3)

This is a quadratic equation for t ′. It has two solutions, one of
them is an advanced solution with t ′ < 0, the other one is our
retarded solution with t ′ > 0.
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Charge moving with constant velocity

We will rewrite the equations for potentials (15.8) for a moving
charge using tret .
Show first that the quantity R in Eq. (15.4) is equal to

R = R − β · R = R(1 − β · n) . (18.4)

ttret v
×

R

x

z

See the proof in the Lecture notes.
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Charge moving with constant velocity

The potentials (15.8) can now be written as

φ =
1

4πε0

q

R(1 − β · n)
, A =

Z0

4π
β

q

R(1 − β · n)
. (18.5)

Remember that R involves the retarded position of the particle.
We can also formally consider β as taken at the retarded time,
because it does not depend on time at all.
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Liénard-Wiechert potentials

It turns out that in this new form the equations are valid for
arbitrary motion of a point charge, even when the charge is being
accelerated and we “accidentally” derived the Liénard-Wiechert
potentials which describe electromagnetic field of an arbitrary
moving particle:

φ(r , t) =
1

4πε0

q

R(1 − βret · n)
,

A(r , t) =
Z0

4π

qβret

R(1 − βret · n)
. (18.6)

Here the particle’s velocity β should be taken at the retarded time,
βret = β(tret), and we remind that R = r − r0(tret) is a vector
drawn from the retarded position of the particle to the observation
point, and n is a unit vector in the direction of R.
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Derivatives of the retarded time

Remember that tret = tret(r , t). Let us calculate ∂tret/∂t. Square
and differentiate (18.1):

∂

∂t
c2(t − tret)

2 =
∂

∂t
(r − r0(tret))

2 (18.7)

which gives

− 2c2(t − tret)

(
∂tret
∂t

− 1

)
= −2(r − r0(tret))

∂

∂t
[r0(tret)]

= −2(r − r0(tret))
dr0
dt

∣∣∣∣
t=tret

∂tret
∂t

. (18.8)

Using βret = c−1dr0/dt |t=tret we find

∂tret
∂t

=
1

1 − βret · n
. (18.9)
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Liénard-Wiechert potentials

Using the definitions of EM potentials,

E = −∇φ−
∂A

∂t
B = ∇× A , (18.10)

we can obtain formulas for the fields:

E =
q

4πε0

n − βret

γ2R2(1 − βret · n)3
+

q

4πε0c

n × {(n − βret)× β̇ret }

R(1 − βret · n)3
,

B = n × E , (18.11)

where β̇ret is the acceleration (normalized by the speed of light)
taken at the retarded time.
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Retarded potentials for an ensemble of particles

The Liénard-Wiechert potentials are convenient for calculation of
fields of a moving point charge. What if we are given a continuous
time dependent current and charge distribution ρ(r , t) and j(r , t)?
Naively, one can think that to obtain the potential for a continuous
distribution one has to replace the charge q by an infinitesimal
charge ρ(r ′, t)d3r ′ in the elementary volume d3r ′ and integrate
over the space,

1

4πε0

∫
ρ(r ′, tret)d

3r ′

|r − r ′|(1 − βret · n)
, (18.12)

where n = (r − r ′)/|r − r ′|. This however, would be wrong. See
Lecture notes.
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Retarded potentials for an ensemble of particles

The correct expressions are:

φ(r , t) =
1

4πε0

∫
ρ(r ′, tret)

|r − r ′|
d3r ′ ,

A(r ′, t) =
Z0

4π

∫
j(r ′, tret)

|r − r ′|
d3r ′ . (18.13)

These integrals are called the retarded potentials. They give the
radiation field in free space of a system of charges represented by
continuous distribution of charge density ρ and current density j .
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Synchrotron radiation
(Lecture 20)

June 19, 2013
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Lecture outline

We will consider a relativistic point charge (γ� 1) moving in a
circular orbit of radius ρ. Our goal is to calculate the synchrotron
radiation of this charge. Using the Liénard-Wiechert potentials we
first find the fields at a large distance from the charge in the plane
of the orbit. We then discuss properties of the synchrotron
radiation using a more general result for the angular dependence of
the spectral intensity of the radiation.
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Synchrotron radiation pulses in the plane of the orbit

An observer is located in point O in the plane of the orbit in the
far zone. The observer will see a periodic sequence of pulses of
electromagnetic radiation with the period equal to the revolution
period of the particle around the ring, ωr = βc/ρ is the revolution
frequency. Each pulse is emitted from the region x ≈ z ≈ 0.

x
z

ρ
ω τ

r

R O

n

r
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Synchrotron radiation pulses in the plane of the orbit

Main steps in the derivation

Use the plane wave approximation for the radiation field (and
replace n with ẑ):

B = −
1

c
ẑ× ∂A

∂t
, E = −cẑ ×B

Denote the retarded time by τ, so that R(τ) = c(t − τ), use
R(τ) ≈ r − ρ sinωrτ. At time τ = 0 the particle is located at
x = z = 0, ρ sinωrτ is approximately equal to the z
coordinate at time τ, hence R ≈ r − z .

In the expression for A, further approximate the factor R in
the denominator by R ' r , yielding

A(r, t) =
Z0q

4πr

β(tret)

1 − β(tret) · n
Quantities depending on tret are not approximated in this way.
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Field in the synchrotron pulse

The final result

By =
Z0q

πrρ

γ−2 − ξ2

(ξ2 + γ−2)3
, t =

r

c
+
ρ

c

(
1

2γ2
ξ+

1

6
ξ3
)
. (20.1)

The variable ξ = cτρ = ωrτ/β has a simple physical meaning—it
is roughly the angle on the orbit from which radiation that arrives
at the observation point O originates [remember our original
concept of waves emitted by an accelerated particle]. Polarization:
the electric field of radiation is in the plane of the orbit.
Introduce the dimensionless time variable t̂ = (γ3c/ρ)(t − r/c)
and the dimensionless magnetic field B̂ = (πrρ/Z0qγ

4)By :

B̂ =
1 − ζ2

(ζ2 + 1)3
, t̂ =

1

2
ζ+

1

6
ζ3 , (20.2)

where ζ = ξγ.
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Time profile of the pulse

-2 -1 0 1 2
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ω τ

r
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n

r

The characteristic width of the pulse ∆t̂ ∼ 1, which means that the
duration of the pulse in physical units

∆t ∼
ρ

cγ3
. (20.3)

The spectrum of frequencies presented in the radiation is
∆ω ∼ cγ3/ρ.
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Fourier transformation of the radiation field and the
radiated power

The power P radiated in unit solid angle dΩ in the x-z plane is,
using the plane wave approximation,

dP
dΩ

= r2S · n =
r2c

µ0
B2
y (t) (20.4)

The total energy flux W in this plane is

dW
dΩ

= r2
∫∞
−∞ dt S(t) .

We consider the spectrum of the radiation. Use Parseval’s theorem:∫∞
−∞ dt By (t)

2 =
1

2π

∫∞
−∞ dω|B̃y (ω)|2 =

1

π

∫∞
0

dω|B̃y (ω)|2 ,

where

B̃y (ω) =

∫∞
−∞ dt By (t)e

iωt .
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Fourier transformation of the radiation field

We introduce the energy radiated per unit frequency interval per
unit solid angle as

d2W
dωdΩ

=
r2c2

πZ0
|B̃y (ω)|2 , (20.5)

so that the total energy radiated per unit solid angle is

dW
dΩ

=

∫∞
0

dω
d2W
dωdΩ

. (20.6)

[dWdΩ and d2W
dωdΩ are not derivatives of the function W, just a

notation.]
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Fourier transformation of the radiation field

The function B̃y (ω) is calculated in the Lecture notes. The
spectrum is

d2W
dωdΩ

=
q2Z0

12π3

(ρω
c

)2( 1

γ2

)2

K 2
2/3

(
ω

2ωc

)
, (20.7)

where K2/3 is the MacDonald function, and the critical frequency

ωc =
3cγ3

2ρ
. (20.8)
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Ω
dW

,a
.u
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The dominant part of the spectrum
is in the region ω ∼ ωc . For NSLS-
II ω ∼ ωc corresponds to the wave-
length of 0.5 nm or 2.4 keV photon
energy.
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Synchrotron radiation for ψ 6= 0

In a more general case of radiation at an angle ψ 6= 0 the
calculation is more involved. We will summarize some of the
results of this general case.
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Synchrotron radiation for ψ 6= 0

A more general formula valid for ψ 6= 0 is

d2W
dωdΩ

=
q2Z0

12π3

(ρω
c

)2( 1

γ2
+ψ2

)2 [
K 2
2/3(χ) +

ψ2

1/γ2 +ψ2
K 2
1/3(χ)

]
,

(20.9)

where

χ =
ωρ

3c

(
1

γ2
+ψ2

)3/2

=
ω

2ωc

(
1 +ψ2γ2

)3/2
. (20.10)

This result was obtained by J. Schwinger in 1949. Setting ψ = 0 we
recover Eq. (20.7).
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Synchrotron radiation for ψ 6= 0

The Bessel functions falls off when the argument χ� 1.
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The spectrum is strongly correlated with the angle. What is the angular
spread in ψ? The dominant part of the radiation is in the region χ . 1.
If ω ∼ ωc , then ψ . 1/γ. For lower frequencies, the angle is larger:

ψ ∼
1

γ

(ωc

ω

)1/3
∼

(
λ

ρ

)1/3

(20.11)
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Synchrotron radiation for ψ 6= 0

The two terms in the square brackets correspond to different
polarizations of the radiation. The first one is the so called
σ-mode, it has polarization with Ex and By . The second one has
the polarization with the electric field Ey and the magnetic field
Bx ; it is called the π mode.
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Synchrotron radiation for ψ 6= 0

The radiation is localized at small angles ψ.

Θ

when integrating over dΩ, in addition to integration over the angle
ψ, one should include integration over the angle θ,

dW
dω

=

∫
dΩ

d2W
dωdΩ

=

∫2π
0

dθ

∫∞
−∞ cosψdψ

d2W
dωdΩ

≈ 2π

∫∞
−∞ dψ

d2W
dωdΩ
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Synchrotron radiation for ψ 6= 0

Integration over the angle gives the frequency distribution

dW
dω

=
2πρ

c

q2γZ0c

9πρ
S

(
ω

ωc

)
, (20.12)

where

S(x) =
27x2

16π2

∫∞
−∞ dτ

(
1 + τ2

)2
·
[
K 2
2/3

(x
2
(1 + τ2)3/2

)
+

τ2

1 + τ2
K 2
1/3

(x
2
(1 + τ2)3/2

)]
=

9
√

3

8π
x

∫∞
x

K5/3(y) dy .

The last expression is not easy to derive, but it is the most
common definition used.
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Synchrotron radiation for ψ 6= 0

Plot of function S .
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The function S is normalized to one:
∫∞
0 dxS(x) = 1 .
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Synchrotron radiation for ψ 6= 0

For small and large values of the argument we have the asymptotic
expressions

S(x) =
27

8π

√
3

21/3
Γ

(
5

3

)
x1/3 , x � 1

S =
9

8

√
3

2π

√
xe−x , x � 1 . (20.13)
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Total radiated power

Integrating dW/dω over all frequencies, we will find the total
energy Wr radiated in one revolution

Wr =

∫∞
0

dω
dW
dω

=
2πρ

c
· q

2γZ0c

9πρ
ωc . (20.14)

The radiation power (energy radiation per unit time) by a single
electron is

P =
Wr

2πρ/c
=

Z0cq
2γ

9πρ
ωc =

2r0mc2γ4c

3ρ2
. (20.15)

Note that P/c is the energy radiated by one electron per unit
length of path.
Number of photons per unit bandwidth per unit time is:

d2Nph

dt dω
=

1

h̄ω

dW
dω

1

2πρ/c
=

8

27
α

1

γ2
ωc

ω
S

(
ω

ωc

)
. (20.16)
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Total radiated power

Let’s calculate the power of synchrotron radiation from dipole
magnets in NSLS-II. The energy 3 GeV, bending magnetic field 0.4
T, current I = 400 mA. Bending radius ρ = p/eB = 25 m,
C = 780 m.

The critical frequency ωc = 3.6× 1018 1/s corresponding to the
wavelength λ = 0.5 nm and the photon energy 2.4 keV.

Radiated power by one electron 8.8× 10−8 W [note that an
electron radiates this power only inside the dipole and dipoles
occupy a small fraction of the ring]. Number of electrons in the
ring N = (C/c)I/e = 8.1× 1012 which the gives total power of
0.14 MW. [There is additional radiation due to the wigglers in the
ring].
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Synchrotron radiation reaction force
(Lecture 24)

June 19, 2013
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Lecture outline

In contrast to the earlier section on synchrotron radiation, we
compute the fields observed close to the beam. We can use this to
evaluate the forces electrons are subject to from the fields produced
by the rest of the beam. Two different methods of calculation will
be shown. The second one is rather strange but it works.
We end by computing the synchrotron radiation reaction force of a
relativistic particle and show, by explicit calculations for a Gaussian
bunch, that the work of this force is equal to the energy radiated
per unit time.
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CSR wake

When a bunch of charged particle emits radiation, the energy of
the electromagnetic field is taken from its kinetic energy. The
energy balance in the process is maintained through a force that
acts in the direction opposite to the velocity of the bunch. This
force is called the radiation reaction force. In this lecture we
consider a different situation where the effect of coherent
synchrotron radiation fields fulfils the energy balance.

To simplify calculations, we will systematically neglect terms of the
order of 1/γ in our derivation. This means that we consider the
limit γ→ ∞ and β = 1. An additional advantage of this approach
is that we automatically neglect the longitudinal Coulomb field of
the bunch, that is proportional to γ−2.

We also assume a thin bunch, σ⊥ → 0. Our goal is to find the
tangential component of the electric field inside the bunch. This is
called the CSR wake.

380/441



CSR wake close to beam

s

α

sr

Rn

ψ

β τ

α

sr

R

ψ

τ

(a) (b)
s

ret

Geometry for (a) ψ > 0, observer in front of particle, and
(b) ψ < 0, observer behind particle. Green = observer, red =
particle at same time t, blue = particle at time tret.
Observer is path length s in front of particle at time t. Negative
sign for location behind particle. Angle ψ = s/ρ, ρ is bending
radius.
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CSR wake close to beam

Define α similarly, particle has moved path length αρ from
location at retarded time. Always positive. Velocity ≈ c , γ→ ∞.

Distance R from retarded position to observer:
R = 2ρ sin(s/2ρ) < s. For straight paths, we expected head of
bunch not to feel any forces from tail; long propagation distance
until fields catch up. But in bend, path of particle is not the
shortest distance between 2 points.

Retarded time:

t − tret =
ρα

c

=
R

c
=

2ρ

c

∣∣∣∣sin

(
α+ψ

2

)∣∣∣∣ . (24.1)
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CSR wake close to beam

Parameter s is defined to follow the beam. s = S − ct, S in fixed
co-ordinates. We use the following:

A =βretΦ/c ,

As =A · τ = (βret · τ)Φ/c ,
Φ =Φ(S − ct) , A = A(S − ct) .

Then

Es = −
∂Φ

∂S
−
∂As

∂t
= −

∂

∂s
(Φ− cAs) = −

∂

∂s
[Φ(1 − βret · τ)] .

(24.2)

Note that

βret · τ ' cos(α+ψ)

βret · n ' cos

[
π

2
−

1

2
(π− α−ψ)

]
= cos

(
α+ψ

2

)
. (24.3)
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CSR wake close to beam

Positive ψ:

Φ− cAs =
q

4πε0

1 − βret · τ
R(1 − βret · n)

=
q

4πε0

1 − cos(α+ψ)

1 − cos[(α+ψ)/2]
' q

4πε0

4

ρα
. (24.4)

From

α = 2 sin

(
α+ψ

2

)
' α+ψ−

1

24
(α+ψ)3 . (24.5)

find α ' (24ψ)1/3 � ψ for small ψ� 1.
Then longitudinal field is

Es = −
∂

∂s
(Φ− cAs) =

q

4πε0

2

34/3ρ2/3s4/3
(24.6)

For negative ψ, fields are negligible.
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CSR wake close to beam

There is a strong singularity near s = 0+. This is not physical,
when s ∼ ρ/γ3 the fields level off and actually switch sign.
Es,max ∼ qγ4/(4πε0ρ

2).

We will wind up restricting attention to ω� ωc . For bunch
lengths much longer than c/ωc ∼ ρ/γ3 the approximate expression
should be accurate enough.
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More accurate CSR result
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A more exact calculation of the single-particle CSR wake, taking
into account scale finite γ and lengths of order ρ/γ3. This
function is needed to show full energy conservation; the other
expression is adequate for looking at frequencies � ωc , which is
all we need for bunches with σz � c/ωc .
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Gaussian current distribution

For lone particles, the radiation reaction force has to be
determined by conservation of energy, namely that the particle has
to lose an amount of energy equal to the energy emitted in the
radiation fields. For a whole bunch, at least the low-frequency part
of the radiated spectrum is balanced by collective fields from the
whole bunch. The collective fields scale as N2 rather than as N for
incoherent radiation.

For the coherent radiation, we need to take into account the
current profile. Assume a Gaussian distribution,
µ(s) = Nq(2π)−1/2σ−1

z e−s2/2σ2z . We also define λ = µ/Nq.
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Gaussian current distribution

The mean or collective longitudinal field is given by

Es(s) =N

∫∞
−∞ Es(s − s ′)λ(s ′) ds ′

=− N

∫ s
−∞(Φ− cAs)|s − s ′

dλ(s ′)

ds ′

=−
Nq

4πε0

2

31/3ρ2/3

∫ s
−∞

1

(s − s ′)1/3
dλ(s ′)

ds ′
, (24.7)

where we integrated by parts.
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Gaussian current distribution

The last integral can be computed numerically, and is shown below.
The inaccurate singularity has minimal impact on the results.
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Figure : CSR field of a Gaussian bunch. The distance is measured in

units of σz , and the field is measured in units of Q/σ
4/3
z ρ2/3, where Q is

the total charge of the bunch. 389/441



CSR wake — unconventional approach

Consider a thin bunch with the charge density per unit length
µ = const moving in a circular orbit.

O1
1�tret

Ψ
Α

We have

ραR = 2ρ

∣∣∣∣sin

(
α+ψ

2

)∣∣∣∣
α = α+ψ−

1

24
(α+ψ)

3

α = (24ψ)1/3

tret = t −
1

c
ρα

We assume that ψ� 1, hence α� 1. This means that we are
dealing with the bunches of length � ρ.
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CSR wake — unconventional approach

Focus on the charge at the edge of the beam tail.
O

1 s

1�t*
ret

Ψ *

Α *

We have

α∗ = (24ψ∗)1/3

t∗ret = t −
1

c
ρα∗

where ψ∗ = s/ρ, with s the distance from the tail of the bunch to
the observation point.

The beam motion before the time t∗ret does not influence the
electric field at time t at point O — we can rectify the trajectory
before that time.
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CSR wake — unconventional approach

The beam is now moving along the straight line tangential to the
position of the beam tail at t∗ret.

O
1 s

1�t*
ret

Ψ *

Α *

One can show that contribution of particles ahead of O is
negligible.

392/441



CSR wake — unconventional approach

Since the particles in front of O do not affect the field at O, we
can extend the beam in the forward direction.

O
1 s

1�t*
ret

Ψ *

Α *
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CSR wake — unconventional approach

If we extend the beam in the back ward direction, than we deal
with the constant current, no radiation, no Es .

O
1 s

1�t*
ret

Ψ *

Α *
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CSR wake — unconventional approach

Hence the field generated by the blue beam is −Es . This is the
position of the beam at time t.

O
1 s

1�t*
ret

Ψ *

Α *
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CSR wake — unconventional approach

This is the position of the blue beam at time t∗ret.

O
1 s

1�t*
ret

Ψ *

Α *

The beam motion after t∗ret does not affect the field at O at time t
— we can rectify the trajectory again.
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CSR wake — unconventional approach

This is the position of the blue beam at time t∗ret.

O
1 s

1�t*
ret

Ψ *

Α *
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CSR wake — unconventional approach

This is the position of the blue beam at time t.

d

E

1�t*
ret

Ψ *

Α *

We have d = ρ(1 − cos(α∗ + φ∗)) ≈ 1
2ρα

∗2. The electric field of
the beam we calculated earlier (15.15) [we changed the sign of E ]

E = −
1

4πε0

2µ

d
= −

1

4πε0

4µ

ρα∗2
(24.8)

398/441



CSR wake — unconventional approach

Es = E sin(α∗ + φ∗) ≈ Eα∗ = −
1

4πε0

4µ

ρα∗

= −
1

4πε0

4µ

ρ(24ψ∗)1/3
= −

1

4πε0

2µ

31/3ρ(s/ρ)1/3

This is the tangential electric field at point s from the back of the
beam of uniform charge density µ. We can represent any charge
distribution µ(s) as a superposition of uniform distributions, and
hence find the field inside such a beam.

µ(s) =

∫
ds ′µ(s ′)δ(s − s ′) = −

∫
ds ′µ(s ′)

d

ds ′
h(s − s ′)

=

∫ s
−∞ ds ′h(s − s ′)

d

ds ′
µ(s ′)
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What the heck does this mean?

We started the CSR analysis by examining fields close to the beam.
This should be the near field, but we took the limit γ→ ∞. Of
the fields derived from the Liénard-Wiechert potential,

E =
q

4πε0

n − βret

γ2R2(1 − βret · n)3
+

q

4πε0c

n× {(n − βret)× β̇ret}

R(1 − βret · n)3
,

B = n×E , (24.9)

it seems like we should ignore the first term, but in fact we are
ignoring the second term with β̇ret. The longitudinal space charge
for a bunch really scales like 1/γ2, but the size of the first term
above is ambiguous and seems to be significant. Then we may as
well assume the particles are moving in a straight line.

By considering a step function for the current density, only the
location where the beam ends is essential. If we could superimpose
the real beam and the fake beam, the fields would cancel at the
observation point.
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Radiation reaction field for a general current profile

Any charge distribution can be represented a collection of step
functions.

s' s

With this representation, we need to add the fields Es from each
step-like “bunch”.
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Radiation reaction field for a general current profile

The longitudinal electric field of the bunch Es(s) is given by the
following integral

Es(s) = −
Nq

4πε0

2

ρ2/331/3

∫ s
−∞

1

(s − s ′)1/3
∂λ(s ′)

∂s ′
ds ′ , (24.10)

where N is the number of particles in the bunch. This agrees with
the earlier calculation.
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Radiation reaction field in a bunch of particles

As we pointed out at the beginning of the lecture, the longitudinal
field keeps the energy balance between the kinetic energy of the
particle and the radiation. Let us demonstrate by direct calculation
for a Gaussian bunch that this is indeed the case. First we
calculate the energy Wr that the beam loses in one turn around
the ring (λ(s) = µ(s)/Nq)

Wr =− Nqc
2πρ

c

∫∞
−∞ ds Es(s)λ(s) (24.11)

=
N2q2ρ1/3

31/3ε0

∫∞
−∞ λ(s)ds

∫ s
−∞

1

(s − s ′)1/3
∂λ(s ′)

∂s ′
ds ′

=
N2q2ρ1/3

31/3ε0 2πσ
4/3
z

2π

∫∞
−∞ λ̂(x)dx

∫ x
−∞

1

(x − y)1/3
∂λ̂(y)

∂y
dy ,

where λ̂ takes s/σz as an argument.
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Radiation reaction field in a bunch of particles

We then have to compare this expression with the power of coherent
synchrotron radiation. The latter is calculated through the expression for
coherent radiation (see Lecture 23)

dW
dω

∣∣∣∣
bunch

=
dW
dω

(N + N2F (ω)) (24.12)

where the intensity dW/dω is taken in the limit of low frequencies as
given in Lecture 20:

dW
dω

=
2πρ

c

q2γZ0c

9πρ
S

(
ω

ωc

)
, (24.13)

S(x) ' 27

8π

√
3

21/3
Γ

(
5

3

)
x1/3 , x � 1 .
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Coherent radiation

The form factor

F (ω) =

∣∣∣∣∫∞
−∞ dsλ(s)e iωs/c

∣∣∣∣2 , (24.14)

The form factor is equal the square of the absolute value of the
Fourier transform of the longitudinal distribution function of the
beam.
For a Gaussian distribution function

λ(s) =
1√

2πσz
e−s2/2σ2z , (24.15)

we have

F (ω) = e−(ωσz/c)2 . (24.16)
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Comparison

This gives the radiated energy per turn as

N2

∫∞
−∞ dωF (ω)

dW
dω

=
2

9
q2γZ0N

2

∫∞
−∞ dωF (ω)S

(
ω

ωc

)
= N2q2γZ0

3

4πωc
1/3

√
3

21/3
Γ

(
5

3

) ∫∞
−∞ dωe−ω

2σ2z/c
2
ω1/3

=
N2q2ρ1/3

31/3ε0 2πσ
4/3
z

3
√

3

2
Γ

(
5

3

) ∫∞
−∞ dωe−ω

2
ω1/3 . (24.17)

The easiest way to do this is to compare the values of the purely
numerical final terms. And, indeed, calculations give that they are
both equal to 3.17594966.

406/441



Formation length of radiation and coherence
(Lecture 23)

June 20, 2013
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Lecture outline

It takes some volume of free space for a particle to generate
radiation. We estimate the longitudinal and transverse size of this
volume for the synchrotron radiation. We then analyze the
radiation of a bunch of particles.
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Formation length

What length of the trajectory is involved in the formation of the
radiation? In Eq. (20.1) the variable ξ = cτ/ρ is related to the
retarded time τ. We saw that the characteristic width of the
electromagnetic pulse in terms of ξ is ∆ξ ∼ γ−1, for a time
duration τ ∼ ρ/cγ. Hence the length of the orbit necessary for
formation of the radiation pulse, which we call the formation
length, lf is

lf ∼ cτ ∼
ρ

γ
. (23.1)

One does not need a complete circular orbit to generate
synchrotron radiation. If the length of the magnet Lm � ρ/γ, all
our results are valid. NSLS-II magnets: ρ = 25 m, γ = 6× 103,
lf ≈ 15 cm.
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Longitudinal formation length

How does this formation length agree with the duration of the radiation
pulse of the order of ρ/cγ3? Since the charge is moving with the velocity
v ≈ c(1 − 1/2γ2), the relative velocity between the charge and the
electromagnetic field is ∆v ∼ c/γ2, and during the formation time τ the
field propagates away from the charge at the distance ∆vτ ∼ ρ/cγ3,
which is the duration of the pulse.
For a short magnet, Lm . ρ/γ, only a fraction of the pulse will be
radiated.

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

t

B

Jumps in the pulse profile generate the edge radiation.
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Longitudinal formation length

More precisely, what we found above is the formation length for
the bulk of radiation with the characteristic frequency ω ∼ ωc .

What is the formation length for frequency ω� ωc? The analysis
requires a more careful look into integrals involved in the
derivation of the spectrum from which it follows that

lf (ω) ∼ ρ2/3λ1/3 , (23.2)

for λ . λc . For the critical frequency ω = ωc this formula gives us
the previous expression.
In quantum language, the formation length gives time for a virtual
photon carried by the electromagnetic field of a particle to free
from the charge and become a real photon.
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Transverse coherence length

A charge also needs some space in the direction perpendicular to
the orbit to release radiation. We can evaluate transverse
coherence length l⊥:

l⊥ ∼ lf∆ψ ∼ ρ1/3λ2/3 . (23.3)

(we used (20.11)).

The practical importance of the transverse coherence is that the
radiation can be suppressed by metal walls, if they are put close to
the beam. More specifically, if the beam propagates through a
dipole magnet in a metal pipe of radius a, then the radiation with
wavelength λ &

√
a3/ρ is suppressed. This is called a shielding

effect and it is important for suppression of undesirable coherent
radiation of short bunches in accelerators.
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Shielding of coherent radiation

The suppression factor for synchrotron radiation when a particle is
moving (on a circular orbit) between two parallel perfectly
conducting plates in the plane equally removed from each plate.
The distance between the plates is 2h.
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Figure : Suppression factor for the intensity of the synchrotron radiation
for the case of parallel conducting plates as a function of frequency.
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Transverse coherence length

The result shown above is valid in the limit ω� ωc . Note that
the horizontal axis in the plot is ωh3/2ρ−1/2/c ∼ (h/l⊥)

3/2, and
one can see that the suppression factor approaches zero when h
becomes much smaller than l⊥.

The concepts of the longitudinal and transverse formation lengths
is very general and is applicable to any kind of radiation processes.
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Coherent radiation

Consider radiation of a bunch of particles. Neglect the transverse size of
the bunch and take into account the longitudinal distribution, λ(s),∫
λ(s)ds = 1.

ik

The Fourier transform of a single pulse magnetic field B(t) of a reference
particle that passes through the center of the coordinate system at t = 0
is

B̃(ω) =

∫∞
−∞ dtB(t)e iωt . (23.4)

The field radiated by the bunch is sum of pulses

B(t) =
N∑
i=1

B(t − ti ) , (23.5)

where ti = si/c with si the position of the particle i in the bunch.
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Coherent radiation

The Fourier image of this field is

B̃(ω) =

∫
dtBe iωt =

N∑
i=1

∫
dtB(t − ti )e

iωt =

N∑
i=1

B̃(ω)e iωti .

The spectral intensity of the radiation is proportional to |B̃(ω)|2

(see Eq. (20.5))

|B̃(ω)|2 =

∣∣∣∣∣
N∑
i=1

B̃(ω)e iωti

∣∣∣∣∣
2

= |B̃(ω)|2
∑
i ,k

e iω(ti−tk )

= |B̃(ω)|2

N +
∑
i 6=k

e iω(ti−tk )


= N |B̃(ω)|2 + 2|B̃(ω)|2

∑
i<k

cos

(
ω
si − sk

c

)
. (23.6)
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Coherent radiation

The first term in the last equation is incoherent radiation—it is
proportional to the number of particles in the beam. The second one is
the coherent radiation term. The number of terms in the last sum is
N(N − 1)/2 ≈ N2/2. Instead of doing summation we can average
cos(ω(si − sk)/c) assuming that si and sk are distributed with the
probability given by λ(s):

2
∑
i<k

cos

(
ω
si − sk

c

)
≈ N2

∫
ds ′ds ′′λ(s ′)λ(s ′′) cos

(
ω
s ′ − s ′′

c

)
= N2F (ω) , (23.7)

where the form factor F (ω) is

F (ω) =

∫
ds ′ds ′′λ(s ′)λ(s ′′) cos

(
ω
s ′ − s ′′

c

)
, (23.8)

and

dW
dω

∣∣∣∣
bunch

=
dW
dω

(N + N2F (ω)) . (23.9)
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Coherent radiation

Eq. (23.8) can also be written as

F (ω) =

∣∣∣∣∫∞
−∞ dsλ(s)e iωs/c

∣∣∣∣2 , (23.10)

Eq. (23.10) shows that the form factor is equal the square of the
absolute value of the Fourier transform of the longitudinal
distribution function of the beam.
For the Gaussian distribution function

λ(s) =
1√

2πσz
e−s2/2σ2z , (23.11)

we have

F (ω) = e−(ωσz/c)2 . (23.12)
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Coherent radiation

For ω/c � 1/σz the form factor is exponentially small. For the
reduced wavelengths longer than the bunch length, λ & σz , the
power scales as the number of particles squared. This radiation by
a factor of N is larger than the incoherent radiation. For a bunch
with N ∼ 1010 this makes a huge difference! However, this
radiation can only occur at long wavelengths, and those are in
many cases (but not always) shielded by walls.
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Effect of the transverse size of the beam

We considered the above radiation in the longitudinal direction.
We now take into account the radiation at an angle and consider a
3D distribution of the beam. The 3D distribution function is λ(r)
normalizes so that

∫
d3rλ(r) = 1.

i

k

ψ
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Effect of the transverse size of the beam

We see that the delay between pulses radiated by the central particle and
a particle located at position r in the bunch is equal to
∆t = (r i − rk) · n/c . The field (23.6) can now be written as

|B̃(ω)|2 = N |B̃(ω)|2 + 2|B̃(ω)|2
∑
i<k

cos

(
ω
n · (r i − rk)

c

)
, (23.13)

which gives for the form factor

F (ω) =

∫
d3r ′d3r ′′λ(r ′)λ(r ′′) cos

(
ω
n · (r ′ − r ′′)

c

)
. (23.14)

Similar to transition from (23.8) to (23.10) one can show that (23.14)
can be written as

F (ω, n) =

∣∣∣∣∫ d3rλ(r)e iωn·r/c
∣∣∣∣2 , (23.15)

that is the square of the absolute value of the three dimensional Fourier
transform of the distribution function.
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Coherent synchrotron radiation

Calculate the coherent synchrotron radiation using Eqs. (23.9). The
dominant contribution to the coherent radiation comes from frequencies
of the order or ω ∼ σz/c which are much smaller than ωc . Hence for the
intensity dW/dω we can use the low frequencies approximation given by
Eqs. (20.12) and (20.13) and assume a Gaussian distribution function

N2

∫∞
−∞ dωF (ω)

dW
dω

=
2

9
q2γZ0N

2

∫∞
−∞ dωF (ω)S

(
ω

ωc

)
= N2q2γZ0

3

4πωc
1/3

√
3

21/3
Γ

(
5

3

) ∫∞
−∞ dωe−ω

2σ2
z/c

2

ω1/3

= 0.2
N2q2γZ0

ωc
1/3

(
c

σz

)4/3

. (23.16)
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Coherent synchrotron radiation

NSLS-II: Number of bunches 1040, bunch length σz = 2.9 mm.
This would give the total radiation power of 87 kW. This power is
actually shielded by the conducting wall of the vacuum chamber.
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Coherent synchrotron radiation

From R. Carr et al., Nature, 2002.

424/441



Transition and diffraction radiation
(Lecture 22)

June 20, 2013
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Transition radiation

The transition radiation (TR) occurs when a charge traveling with
a constant velocity crosses a boundary that separates two media
with different electric properties. We will calculate the TR for the
case when a charge hits a plane metal surface, moving in the
direction perpendicular to the surface.

v
R

θ

v

-v

q

-q

q 1

2
z
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Transition radiation

We replace the metal with an image charge. The boundary
conditions in this case are satisfied automatically. The charges
collide at point O at time t = 0 and annihilate. At time t > 0
there are no charges in the system. [Method of images]

The trajectories of particles 1 and 2 for t < 0 are given by
r1(t) = (0, 0, vt) and r2(t) = (0, 0,−vt) respectively. We also

need to define the retarded times for both particles, t
(1)
ret and t

(2)
ret .

They satisfy equations c(t − t
(1)
ret ) = |R − r1(t

(1)
ret )| and

c(t − t
(2)
ret ) = |R − r2(t

(2)
ret )| correspondingly (see (18.1)), again for

t
(1)
ret < 0 and t

(2)
ret < 0. Note that the moment t

(1)
ret = t

(2)
ret = 0

corresponds to r1 = r2 = 0 and t = R/c ; we will use this
observation below.
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Transition radiation

To calculate the radiation, we need to find the vector potential A

at the observation point. For t
(1)
ret < 0 and t

(2)
ret < 0 this is the

potential corresponding to two charges, and for t
(1)
ret > 0 and

t
(2)
ret > 0, when there are no charges in the system, A = 0. As noted

above tret = 0 corresponds to t = R/c , hence, for t < R/c we can
use Eq. (18.5)

A =
Z0

4π

(
β

q

R1(t
(1)
ret )(1 − β · n)

+ (−β)
(−q)

R2(t
(2)
ret )(1 + β · n)

)

× h

(
R

c
− t

)
where β = (0, 0, v/c), h is the step function, and

R1(t) =
√

(z − vt)2 + x2 + y2 , R2(t) =
√

(z + vt)2 + x2 + y2 .

Note: R here is the same as r earlier.
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Transition radiation

The magnetic field of the radiation is given by

B = −
1

c
n × ∂A

∂t
. (22.1)

When we differentiate the equation for A with respect to time, we
only need to differentiate the function h—differentiating R1 and R2

would give a field that decays faster than 1/R. The result is

B =
Z0

4π

q

c
δ

(
R

c
− t

)(
1

R1(0)(1 + β cos θ)
+

1

R2(0)(1 − β cos θ)

)
· (n × β) (22.2)

where n is a unit vector in the direction of R. [Polarization]
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Transition radiation

The values of R1 and R2 in this equation should be taken at the
retarded time tret = 0:

R1 = R2 =
√

z2 + x2 + y2 = R , (22.3)

and

B =
Z0

4π

2q

Rc
δ

(
R

c
− t

)
n × β

1 − β2 cos2 θ
. (22.4)

We see that the radiation field is an infinitely thin spherical wave
propagating from the point of entrance to the metal. Since the
Fourier transform of the delta function is a constant, we conclude
that the spectrum of the radiation does not depend on the
frequency.
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Transition radiation

The spectrum of the radiation is given by Eq. (20.5) with

B̃(ω) =

∫∞
−∞ dtB(t)e iωt =

Z0

4π

2qe iωR/c

Rc

n × β

1 − β2 cos2 θ
. (22.5)

For the angular distribution of the spectral power we have

d2W
dωdΩ

=
c2R2

πZ0
|B̃(ω)|2 =

Z0q
2

4π3
β2 sin2 θ

(1 − β2 cos2 θ)2
. (22.6)

It follows from this equation that for a relativistic particle the
dominant part of the radiation goes in the backward direction.
Using β2 = 1 − γ−2 and approximating sin θ ≈ θ and
cos2 θ ≈ 1 − θ2 we find

d2W
dωdΩ

≈ Z0q
2

4π3
θ2

(γ−2 + θ2)2
. (22.7)
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Transition radiation
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Figure : Angular distribution of transition radiation for a relativistic
particle. [Note: vertical axis should be normalized to γ2, not γ4.]

432/441



Transition radiation

One can integrate this equation to find the spectrum of the
transition radiation

dW
dω

= 2π

∫π
π/2

sin θdθ
d2W
dωdΩ

=
Z0q

2

4π2

[(
1

β
+ β

)
arctanh(β) − 1

]
. (22.8)

[can not replace sin θ by θ].

The spectrum of the radiation does not depend on the frequency.
Formally, integrating over ω from zero to infinity, we will find that
the total radiated energy diverges. In reality, the spectrum is cut
off at high frequencies because metals lose their capability of being
perfect conductors, and the transition radiation is suppressed. This
occurs at h̄ω ∼ 10 − 30 eV (submicron wavelength).
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Transition radiation

Problem 22.2. The usual setup in the experiment for the optical
transition radiation (OTR) diagnostic is shown in figure below: the beam
passes through a metal foil tilted at the angle 45 degrees relative to the
beam orbit. Show that in this case the radiation propagates
predominantly in the direction perpendicular to the orbit. How to solve
this problem using the method of image charges?

q
v
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Transition radiation

From R. Fiorito and D. Rule. OPTICAL TRANSITION
RADIATION BEAM EMITTANCE DIAGNOSTICS.

435/441



Transition radiation in the forward direction
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Diffraction radiation

Interception of the beam with a foil either destroys it or deteriorates the
beam properties. Sometimes one would like to generate radiation without
strongly perturbing the beam. This can be achieved if the beam passes
through a hole in a metal foil—and generates so called diffraction
radiation. The radiation properties depend on the size and the shape of
the hole. The complete electromagnetic solution of the radiation problem
in this case requires methods which are beyond the scope of this course.

a

−1
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Diffraction radiation

It can be shown that in the limit γ� 1 and θ� 1 the angular
spectral distribution of the diffraction radiation is given by the
following formula

d2W
dωdΩ

≈ Z0q
2

4π3
θ2

(γ−2 + θ2)2
F

(
ωaθ

c
,
ωa

cγ

)
, (22.9)

where

F (x , y) =

(
yJ2(x)K1(y) −

y2

x
J1(x)K2(y)

)2

, (22.10)

with J1,2 the Bessel functions and K1,2 the modified Bessel
functions.
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Diffraction radiation

In the limit a → 0 the function F → 1 and we recover the result of
the transition radiation (22.7). The hole has a small effect on the
transition radiation at a given frequency ω if it is small,
a� cγ/ω. We plot the spectral intensity of the radiation as a
function of the angle θ for several values of the parameter aω/cγ.
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Diffraction radiation
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Figure : Angular distribution of the diffraction radiation for various values
of the parameter aω/cγ (indicated by numbers near the curves). The
dashed line shows the limit a → 0, corresponding to the case of the
transition radiation.
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Diffraction radiation
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